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1. INTRODUCTION

Although from a historical point of view, composite materials have found practical use
for centuries, during the past two decades there has been a tremendous increase in the use
of composite materials in engineering applications, particularly in aerospace engineering.
The main attraction of these materials is the ability to design and manufacture such
materials to sustain a specific type of loading in the most efficient manner. If properly
produced, composites can often achieve a combination of properties that are far superior

to the properties of the individual constituents acting independently.

It is well known that gas turbine engine structures, particularly those components di-
rectly in the hot gas flow path, are subjected to extremely severe thermal and mechanical
loading that can often lead to creep enhanced distortion, cracking and low cycle fatigue.
As the demand for more efficient propulsion systems rise so does the thermal and mechan-
ical loading. It is unlikely that the current generations of metal alloys would be suitable
candidates for structural components in the future generations of efficient propulsion sys-
tems. Ceramic components are often thought to be ideal as far as their thermal durability
is concerned. Unfortunately, ceramics do not have adequate tensile strength to sustain a
high level of mechanical loading. In recent years there has been significant effort in the
attempt to incorporate fibrous inclusions within a ceramic matrix to develop a class of new
materials, known as ceramic composites, for advanced engineering application.

The mechanical behavior of ceramic composites under nonlinear, thermal, and dynamic
loading is extremely complex and can only be understood if the observed behavior is
interpreted in terms of micromechanical analyses. Such analyses must take care of the
complex interaction of the individual fibers or bundles of fibers embedded in the three-
dimensional ceramic matrix and must allow for increasing levels of sophistication in terms
of the idealization of the fibers as well as the ceramic matrix. In addition complex interface
behavior and controlled failure of the fiber must be considered.
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It is evident that for proper micromechanical analysis of ceramic composites one needs
to use a numerical method that is capable of idealizing the individual fibers or individual
bundles of fibers embedded within a three-dimensional ceramic matrix. The analysis must
be able to take account of high stress or temperature gradients from diffusion of stress or
temperature from the fiber to the ceramic matrix and allow for the interaction between
the fibers through the ceramic matrix. The analysis must be sophisticated enough to
deal with failure of fibers described by a series of increasingly sophisticated constitutive
models. Finally, the analysis must deal with micromechanical modeling of the composite

under nonlinear thermal and dynamic loading.

The boundary element method is uniquely suited for the task. BEM has proven its
ability to accurately determine stress near a stress concentration. All functional quantities
in a BEM system are on the boundary and interface surfaces, therefore, allowing nonlinear
interaction on the interface between the matrix and the fiber to be readily described by fail-
ure models. Furthermore, recent development has shown the generality and versatility of
boundary element method in analyzing large two- and three-dimensional models subjected

to static, dynamic, and thermal loads involving materials with nonlinear behavior.

This report details progress made during the first three years of a five-year program
commencing in March 1988, tow:ardé the develc;pment of a boundary element code designed
for the micromechanical studies of advanced ceramic composite. Additional effort has been
made in generalizing the implementation to allow the program to be applicable to real

problems in the aerospace industry.

The ceramic composite formulations developed for this work have been implemented in
the three-dimensional boundary element computer code ‘BEST3D’ which was developed
for NASA by Pratt and Whitney and the State University of New York at Buffalo under
contract NAS3-23697. BEST3D was adopted as the base for the ceramic composite pro-
gram, so that many of the enhanced features of this general purpose boundary element
code could be utilized. Some of these facilities include sophisticated numerical integration,
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the capability of local definition of boundary conditions, and the use of quadratic shape
functions for modeling geometry and field variables on the boundary. The multi-region
implementation permits a body to be modeled in substructural parts; thus dramatically
reducing the cost of the analysis. Furthermore, it allows a body consisting of regions of
different ceramic matrices and inserts to be studied.

In the next chapter the elastostatic and steady-state heat conduction boundary ele-
ment formulation for ceramic composites is developed. The method for the semi-analytic
integration of the kernel functions about the fiber is presented and the numerical imple-
mentation of the formulation is discussed. This is followed by the development of the
uncoupled thermoelastic BEM formulation in Chapter 3. Up to this point, only fibers
assumed to be perfectly bonded to the composite matrix were considered. In Chapter 4,
the previous formulations are rederived in a form suitable for more general fiber to ma-
trix interface connections. A spring and a nonlinear, coulomb friction constitutive models
are developed for use as interface relations, and nonlinear solution algorithm is presented.
Chapter 5 contains the transient heat conduction and transient uncoupled thermoelastic
BEM formulations. Chapter 6 outlines the development of the general computer program
implementation. In Chapter 7, a number of numerical examples are presented to demon-
strate the power of the present implementations. This report is then concluded with a

summary and plan for future developments.
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2. Steady-State Heat Conduction and Elastostatic BEM Formulation

2.1 Introduction

The conventional boundary integral equations for elastostatic and steady-state heat
conduction analyses are used in deriving a boundary element formulation for the analysis
of ceramic composite structures. The boundary integral equation written for a point in the
interior of the composite matrix is modified by adding to it the boundary integral equations
of each insert written at the same point in the composite matrix. This eventually eliminates
the displacement (or temperature) variables on the insert-matrix interface from the system,
and therefore, reduces the total number of equations required for a solution of the system.

The BEM formulation for the steady-state heat conduction analysis of ceramic com-
posites is identical to the elastostatic formulation, and therefore, the two formulations will

be derived as one.

2.2 Boundary Integral Equation Formulations
The direct boundary integral equation for the displacement (or temperature) at a point

¢ inside an elastic composite matrix is
Co(eru(©) = [ [082,10) - F(a, 040 as@)

N
t 2-:1 /S [Gf}(r,f)tf’(w) - Fi?(z,f)ufl(l)] ds™(z) (2.1)

i,j =1,2,3 for elastostatics
i,j = 1 for heat conduction

where
Gij, Fi; are the fundamental solutions of the governing differential equations of the ceramic
matrix of infinite extent
C;; are constants determined by the geometry at ¢
u;,t; are displacements and tractions (or temperature and flux)
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S,S™ are the surfaces of the outer boundary of the matrix and the n** hole (left for fiber),
respectively

N is the number of individual insert fibers

Superscripts O and H identify the quantities on the outer surface of the matrix and the
quantities on the surface of the hole, respectively.

The conventional boundary integral equation for displacement (or temperature) can
also be written for each of the N insert fibers. For the displacement (or temperature) at a

point ¢ inside the n* insert we can write

chieu©) = [ [l erite) - Fyto.ndto) a2 (22)
i,j=1,2,3 for elastostatics
i,j = 1 for heat conduction

Gl;, F} are the fundamental solutions of the n*® insert
¢l are constants determined by the geometry at ¢ in insert n
ul,t] are displacement and tractions (or temperature and flux) associated with the nth

insert

S™ the surface of the n'" insert

We next examine the interface conditions between the composite matrix and the insert.
For a perfect bond the displacement (or temperature) of the matrix and the displacement
(or temperature) of the inserts are equal and the tractions (or fluxes) along the interface

are equal and opposite.

uf(2) = ul(2) (2.30)

tf(2) = —t{(2) (2.3b)

In elastostatics, when the elastic modulus of the insert is much greater than the modu-
lus of the composite matrix, the Poisson ratio of the insert can be assumed equal to that of
the matrix with little error (no approximation is required for the heat conduction analysis).
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Therefore, upon consideration of the surface normals at the interface and examination of

the F;; kernels, we can write the following relation for the n*" insert
Fli(z,8) = —F{j(z,€) (2.3¢)

Substitution of equations (2.3) into equation (2.2) yields the following modified boundary

integral equation for insert n.
cheu©) = [ [~ Gtz 0t @)+ File. ()| 57(2) (24

Finally adding the N insert equations (2.4) to equation (2.1) and cancelling terms, yields

the modified boundary integral equation for the composite matrix

Cis(€)ui6) = [ |Gz O1P(=z) ~ FJ(z,§)ud() | dS(=)
)

N _
+3 [ Gn@ot @) 5)

n=l
where

Gl(z,€) = GH(z,8) - (Gli(=,€))"

Cy;(€) are constants dependent on the geometry for a point ¢ on the outer boundary and

Ci;(€) = &; for a point ¢ in the interior of the body.

2.3 Analytic Integration Around an Insert

The boundary element discretization of equations (2.4) and (2.5) in the conventional
manner [Banerjee and Butterfield (1981)] requires a very fine discretization about the
hole/insert. Alternatively, a new formulation is introduced in this report for the efficient
modeling and analysis of holes/inserts using what the authors refer to as ‘Insert Elements’.
The inserts are defined with Insert Elements by describing the centerline of the (curvilin-
ear, tubular) insert with nodal points; defining the connectivity of the nodal points; and
specifying the radius of the insert at each of these nodal points. Internally the program
generates the surface of the insert and the hole in which the resulting displacements (or
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temperatures) and tractions (or fluxes) are described using a trigonometric circular shape
function in the circumferential direction and a curvilinear shape function of any order
in the longitudinal direction (the present work employs both linear and quadratic shape
functions for this purpose). A long hole (which is allowed to vary in diameter) can be
described by a number of the insert elements connected end to end, and any insert element
not connected to another is assumed, by the program, to be closed at the end by a circular
disc.

Using the concept of the insert element, the essential part of the formulation is the
conversion of the two-dimensional surface integration of the insert (and of the hole) to a
one-dimensional integration. By performing a semi-analytical integration on the surface
of the hole (or insert) the numerical integration is significantly reduced. In equation (2.5)
the integral under the summation is the integral associated with the hole which is to be
modified. To facilitate an analytic integration in the circumferential direction, the three-
dimensional kernel functions are first expressed in local coordinates with the center of the
coordinate system coinciding with the center of the insert/hole and the z axis aligned with
the centerline of the insert. The relative tra,nslatioh ¢/ is added to the field coordinate &

and the rotation is applied using the appropriate vector transformation.
&= a5 + €

where a;; are the direction cosines between the axis of the local and global coordinate
systems and the bar indicates a local variable.
The integration point z; for a ring can now be expressed in cylindrical coordinates

relative to the center of the hole/insert as

z, = Reost
zo = Rsinf
I3 = 0

where R represents the radius of the insert, i.e., R = (z2 + 23)'/2,
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The normal vectors are transformed by
n, = n,cosb

Ny = nesinf
N3 =ng

where n, and n, represents the normals of the side of the hole in local coordinates and are
dependent on the change in the radius of the insert/hole. On the side of a straight hole
n, = 1 and n, = 0, and on the flat surface closing the end of the hole/insert n, =0 and n, = 1.

Next a circular shape function is employed to approximate the variation in the trac-
tion (or flux) about the circumference of the hole/insert. The circular shape function is
multiplied and integrated with the three-dimensional G7; kernel, allowing the nodal values

of traction (or flux) to be brought outside the integral. The shape function is expressed as

t; = M"t] (summation over v is implied, v =1,2,3)

where
M(0) = 3 + 3cosf
M%(0) = % + ?sin& - %cos@
M) = 5 - -?sine - %cosﬁ

and ¢t} is the nodal traction (or flux).
A modified circular shape function is used in the integration over the end of the hole to

insure continuity of traction at the center of the end surface. The modified shape function

is expressed as: )
MY =aM"Y 4+ b/3 v=12,3

a=r/R b=(R-r)/R
where
R is the radius of the hole at the end,
r is the location of the integration (Gauss) point as it sweeps from
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r=0tor=R, and

MY is the circular shape function defined above.
The traction must also be transformed between the local and the global systems by
i = aikte

or

t; = amjtm

Since flux is a scalar quantity, no transformation is necessary in the heat conduction
analysis.
The last term in equation (2.5) can now be analytically integrated in the circumferential

direction. For the m*™ hole the two integrals involved can be expressed as

2
/ Gl(z, )t (z)ds™(z) = / ajr | GEPN(R,8,2,6)MYRdfaet]dC™
sm cm 0

Cm

where the indicated integration over C™ is now a one-dimensional curvilinear integration
along the hole and G represent the analytically integrated hole/insert kernels. Note, since
the transformation vector a; is the independent of angle 6, it may be taken outside the dé
integration. Similar analytic integration is also performed in equation (2.4).

The final kernel functions of the hole/insert obtained from the analytical integration
are very lengthy and therefore are not presented in this report. They contain functions of
elliptical integrals which in general are expressed numerically by common series approxi-
mations. For a range of input values (coordinate locations), several higher order elliptical
integral functions were found to produce incorrect numerical results. To overcome this
problem, several new series were derived using a best fit polynomial approximation (as a
function of the modulus of elliptic integrals) using values of the integrals calculated by a
very accurate numerical integration in the circumferential direction.

9



(1

The derivation of the insert/hole kernels corresponding to the strain equation are
accomplished from the displacement equation (2.5) by differentiation and application of
the strain-displacement equations. The stress equation is then found using Hooke’s Law.
Due to the complexity of the resulting insert/hole kernels, the authors perform the required
differentiation before the analytic circumferential integration.

Finally we note, an insert which has curvature along its length will differ in surface
area about the circumference on the curved portion of the insert. This is neglected in the
formulation since the analytical integration is performed on an axisymmetric ring in which
the surface area is constant about the circumference. This error, however, is small and
disappears completely on a straight tubular insert which is most commonly encountered.
We should also mention that the inserts should not intersect the outer surface of the
body or intersect other inserts. This minor restriction can be ignored if results at these
locations are not of interest. As long as the inserts do not coincide with nodal points of
other elements the errors will be localized and will not affect the overall boundéry element

solution.

2.4 Numerical Implementation

The integral representations of Section 2.2 are extremely accurate statements of the
ceramic composite problem, however, approximations such as finite discretization and nu-
merical integration are necessary in order to obtain a solution to non-trivial problems.
The goal of the numerical implementation of the present formulation is to obtain the most

accurate and efficient implementation possible.

2.4.1 Discretization

After the analytical integration in the circumferential direction is complete, an insert in
a three-dimensional solid can be modeled as a two-dimensional curvilinear line element with
a prescribed radius at each longitudinal node. In the present work, linear and quadratic
shape functions are utilized in modeling the geometry and field variables along the insert

10
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element as well as the boundary elements on the outer surface of the 3-D body. In the
discretized form the displacement boundary integral equation for an elastic body containing
inserts (equation (2.4)) can be expressed for a single insert as
P
cheu©=-%[ [ iz onmic|q
p=1 4
P
+ 3 [ [ rionmacr|a (26)
p=1 Cr
where
P is the number of line elements, and
N7(n) represents a shape function over the curvilinear line element. Summation over ¥
is implied.

t7 and u} are nodal values of traction (or flux) and displacement (or temperature) on

the surface of the hole, respectively.

In a similar manner, equation (2.5) can be discretized using one- and two-dimensional

shape functions in the following manner.
- Q i
Cy@u© =3[ [ 65 oL m nayist|f

q=1

-3 _ /S , Fg(z,f)Lﬁ(m,nz)dSq] u? (2.7)

Y /C , G,-,-(z,e)N"(n)dC”] 7

where
Q is the number of surface elements on the outer surface of the composite matrix in

the region, and

LP(m,n2) represents a two-dimensional shape function. Summation over v and g is

implied.

It is important to note that the displacement and traction (or temperature and flux)
on an insert/hole varies in the longitudinal as well as the circumferential direction, i.e., for

i1



displacement (or temperature).

- a ary,,ay
u; =M Nuj

The circular shape function M* has been analytically integrated into the kernel func-
tions of equations (2.6) and (2.7). The ends of the inserts are assumed to be a flat surface
and a one-dimensional numerical integration is carried out in the radial direction. The
coefficients obtained from the integration over the end are lumped with their respective
coeflicients from the integration of the side of the insert.

Equations for stress, strain, or flux at points in the interior of a body can be discretized

and integrated in a similar manner.

2.4.2 Numerical Integration
The complexity of the integral in the discretized equation necessitates the use of nu-
merical integration for their evaluation. The steps in the integration process for a given

element is outlined below:

1. Using appropriate Jacobian transformations, a curvilinear line element or surface ele-

ment is mapped on a unit line or on a flat unit cell, respectively.

2. Depending on the proximity between the field point (¢) and the element under con-
sideration, there may be element subdivision and additional mapping for improved

accuracy.

3. Gaussian quadrature formulas are employed for the evaluation of the discretized inte-
gral over each element (or sub-element). These formulas approximate the integral as a
sum of weighted function values at designated points. The error in the approximation
is dependent on the order of the (Gauss) points employed in the formula. To mini-
mize error while at the same time maintaining computational efficiency, optimization
schemes are used to choose the best number of points for a particular field point and
element (Watson, 1979).

12



4. When the field point coincides with a node of the element being integrated, the inte-
gration becomes singular. In this case, the value of the coefficients of the Fi; kernel
corresponding to the singular node cannot be calculated accurately by numerical inte-
gration. Instead, after the integration of all elements is complete, this value is deter-
mined so as to satisfy a rigid body displacement of the body (Banerjee and Butterfield,
1981).

2.4.3 Assembly of Equations

After the derivation of the modified boundary integral equations and the analytical
circumferential integration of the kernel functions, the next critical step in the formulation
is the assembly of the inserts in the system equations. Here, efficiency is of utmost im-
portance. The approach to writing an efficient algorithm is to keep the number of system
equations to a minimum by eliminating all unnecessary unknowns from the system. The
strategy is to retain in the system only traction variables on the matrix-insert interface.
This is in contrast to a general multi-region problem where both displacement and trac-
tions are retained on an interface. The elimination of the displacement on the interface is
achieved through a backsubstitution of the insert equations in the system equations which
are made up exclusively from equations written for the composite matrix (on the outer
surface and on the surface of the holes). The procedure is described below.

Equation (2.7) is used to generate a system of equations for nodes on the outer surface
of the composite matrix and for nodes on the surface of the holes containing the inserts.

Written in matrix form we have
On the Matrix Quter Surface: GOtO —FOPu% + GtE =0 (2.8a)

On the Matrix Hole Surface: GOtO — FOuO 4+ GtH = Iu¥ (2.8%)

where
t© and u® are traction and displacement (or flux and temperature) vectors on the outer
surface of the composite matrix

13
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t¥ and uH are traction and displacement (or flux and temperature) vectors on the hole

I i1s the identity matrix

G© and F© matrices contain coefficients from the integration over the outer boundary.
g

G matrix contains coefficients integrated about the hole/insert

Our goal is to eliminate u¥ from the system. To this end, equation (2.6) is written for every
node on an insert, collocating slightly outside the boundary of the insert [at a distance of

(1.25)+(insert radius)] where CJ(£) = 0.
FIZ T _ Gl2t!

Superscript 12 identifies the equations written at points located slightly outside the bound-

ary of the inserts.

Noting uF = u! and t¥ = t! we have
F2uH = _GI%tH (2.9)
Post multiplying equation (2.8b) by the F? matrix in equation (2.9) yields
F12GOt° — F2FOy° 4 FI2GtH = F2uH (2.10)

Equation(2.9) can now be set equal to equation (2.10) and the final form of the system is
derived.

On Outer Surface: GOtC - FOu®+ Gt =0

On Hole: FI2GOt° — FI?FOu® + (F2G+ G)tH =0 (2.11)

At every point on the outer surface, either the traction or the displacement (or the
temperature or the flux) is specified and on the surface of the hole only the tractions (or
fluxes) are retained. Therefore, the number of equations in the system are equal to the
final number of unknowns, and hence, the system can be solved. Thereafter, equation
(2.8b) is used to determine the displacement on the matrix-insert interface.

14



It should be noted that since the displacement (or temperature) about a particular
hole is present only in the insert equation corresponding to that hole, backsubstitution can
be performed one insert at a time in a more efficient manner than backsubstitution of all
inserts at once. Further, nowhere in the assembly process is a matrix inversion necessary.
This efficient assembly process was made possible due to the unique formulation of the
modified boundary integral equations developed earlier in this chapter.

When the composite matrix is divided into a multi-region model, the above insert
assembly is performed for each region independently. Thereafter, equilibrium and compat-
ibility conditions are invoked at common interfaces of the substructured matrix composite.
After collecting together the known and unknown boundary quantities, the final system

can be expressed as

APx = BPy (2.12)

where
x is the vector of unknown variables at outer boundary unknown tractions (or fluxes)
along the hole/insert interface
y is the vector of known variables on the outer boundary of the composite matrix,
and

AP BP are the coefficient matrices

Standard numerical procedures are used to solve the unknowns in equation (2.12).
Details are described in the computer development section (Chapter 6).

Once the unknowns are determined, the resulting displacements (or temperatures)
on the matrix-insert interfaces can be found using equation(2.8b) rendering a complete

boundary solution for both the inserts and composite matrix.

2.5 Interior Quantities
Once all of the displacements and tractions (or temperature and fluxes) are known on
the matrix outer surface and on the matrix-insert interface, interior quantities of displace-

15
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ment, stress and strain (or temperature and flux) can be determined at any point in the
composite matrix or insert. For displacement (or temperature), either the conventional
boundary displacement (or temperature) integral equation (2.1) or (2.2) can be employed
or alternatively the modified equations (2.3) or (2.5) can be used.

Equations for strains can be derived from the forementioned displacement equations
and the strain-displacement relations. Thereafter, equations for stress are obtained by
substituting the resulting strain equations into Hooke’s law.

The resulting equations, however, are not only invalid on the surface, but also difficult
to evaluate numerically at points close to it. For points on the surface, the stresses can
be calculated by constructing a local Cartesian coordinate system with the axes 1 and
2 directed along the tangential directions and the axis 3 in the direction of the outward

normal. The stresses 5;; referred to these local axes (indicated by overbars) are then given

by:
& 3+ €11 +&22 ) + E .
n= gt Tz fn e ALY
4 o E E
12 =00 = grye
v . Ev E
Foo = 3 3 —_F 2.13
G22 1_V13+ T (En +€22> + T3 52 (2.13)
a3 = 13

where E is the Young’s modulus, &; defines the components of the strains in the local axes
system and ; are the traction on the boundary. This method of evaluating the stresses on

the surface was originally devised by (Rizzo and Shippy, 1968).
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3. Steady-State Uncoupled Thermoelastic BEM Formulation

3.1 Introduction

The boundary element formulation for the steady-state uncoupled thermoelastic anal-
ysis of perfectly bonded ceramic composite structures is similar to the elastostatic/heat
conduction BEM formulation of Chapter 2. The primary difference is the inclusion of
one-way coupling terms which, for the present formulation, requires the solution of the
heat conduction equation prior to solving the thermoelastic equation set. This, however,
is favorable since solving two uncoupled subsystems independently is more efficient than

solving the system as a whole.

3.2. Boundary Integral Equation Formulation
Once again, the conventional boundary integral equation is the starting point for the
uncoupled thermoelastic ceramic formulation. The displacement/temperature for a point

¢ inside the elastic composite matrix is

Cius®) = / |65, 10@) - FS(e,015(2)| aste)

+Z / ot ontfe) - Rl (e, ()] 5°(@) (3.1)

i,j=123.4
where
Gij, Fi; are the uncoupled thermoelastic fundamental solutions of the governing differential
equations of the ceramic matrix of infinite extent [Dargush, 1987]
C;; are constants determined by the geometry at ¢
u;,t; are displacements and tractions for i = 1,2,3, and temperatures and fluxes for i =4
5,5 are surfaces of the outer boundary of the matrix and the n*" hold (left for fiber),
respectively
N is the number of individual insert fibers
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Superscripts O and H identify the quantities on the outer surface of the matrix and the
quantities on the surface of the hole, respectively.

The conventional boundary integral equation for displacement/temperature can also
be written for each of the N insert fibers. For the displacement/temperature at a point §

inside the nt* insert we can write
Sl = [ [ohte 0@ - Fyta 00| a5 (32)
ij=1,234
G;, F} are the fundamental solutions of the »n*® insert

cl

I, are constants determined by the geometry at ¢ in insert n

u!,t! are displacement and tractions (i = 1,2,3) and temperature and fluxes (i = 4) asso-

ciated with the n** insert

S™ the surface of the n* insert

We next examine the interface conditions between the composite matrix and the in-
sert. For a perfect bond the displacement/temperature of the matrix and the displace-
ment/temperature of the inserts along the interface are equal and the tractions/fluxes are

equal and opposite.
uf(z) = ul(z) (3.30)
tH(2) = -t{(z) (3.3b)
Substitution of equations (3.3) into equation (3.2) yields the following modified boundary

integral equation for insert n.
CYOu© = [ [ - Chie 00 (e) + Fia 01(2)| a57) (3.4
Finally adding N insert equations (3.4) to equation (3.1) and canceling terms, yields the

modified boundary integral equation for the composite matrix
Cueu(® = [ [636e.619(e) - Fle,0(2)] e
N g -
+2 /s [Gi}-(z,f)tf’ (z) — Fj(z,)uf’ (:r)] dS™(z) (3.5)
n=1
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where

Gy(=,€) = GHi(=,6) - (Gl;(=,6)" (3.6)

Fp(z,8) = Fi{(z.0) + (Fj(z.9)" (3.7)

C.;(€) are constants dependent on the geometry for a point ¢ on the outer boundary and

C;;(€) = &; for a point in the interior of the body.

3.3 Assembly of Equations

The approach to writing an efficient algorithm is to keep the number of system equa-
tions to a minimum by eliminating all unnecessary unknowns from the system. Once
again the strategy used is to retain in the system only traction/flux variables on the
matrix-insert interface. This is in contrast to a general multi-region problem where both
displacement/temperatures, and tractions/fluxes are retained on an interface. The elimi-
nation of the displacement/temperatures on the interface is achieved through a backsub-
stitution of the insert equations into the system equations which are made up exclusively
from equations written for the composite matrix (on the outer surface and on the surface
of the holes). The procedure is described below.

Equations (3.4) and (3.5) can be discretized and integrated as described in chapter 2.
The thermoelastic and heat conduction equations are integrated simultaneously. Therefore,
using equation (3.4) a system of equations can be generated for the nodal points on the
discretized composite matrix model. The equations for the nodes on the outer boundary
of the matrix and for the nodes on the hole surface can be written separately in matrix

notation as:
On the Matrix Outer Surface: GOtO —FOuO + GtE —Fut =0 (3.8a)

On the Matrix Hole Surface: GOtO — FOu© + GtH — FuH = Iu¥ (3.8b)

where
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t© and u® are traction/flux and displacement /temperature vectors on the outer surface

of the composite matrix

tH and u¥ are traction/flux and displacement/temperature vectors on the hole

I is the identity matrix

G© and F° matrices contain coefficients from the integration over the outer boundary.

G and F matrices contain coefficients integrated about the hole/insert

Our goal is to eliminate u¥ from the system. To this end, equation (3.4) is written for every
node on an insert, collocating slightly outside the boundary of the insert [at a distance of
(1.25)+ (radius of insert)] where C/;(¢) = 0.

G2l _Fl2yl = o

Superscript I2 identifies the equations written at points located slightly outside the bound-
ary of the inserts.

Noting uf = u!, and t¥ = -t! we have
FI2,H = _gI2H (3.9)
Post multiplying equation (3.8b) by the FI? matrix in equation (3.9) yields
F12GOtO — FI?2FOu® 4 FI2GtH - FI2Fuf = FI2uH (3.10)
Equation (3.9) can now be set equal to equation (3.10) and the final form of the system is

derived.

On Outer Surface: GOtO —FOul + GtH —Fuf =0 (3.11a)
On Hole: FI2GOt0 - FI2FOu® + (F12G + GI?)tH - F?Fuf = O (3.115)

Matrix F of equation (3.11) are coefficients derived from the integration of the F;

kernel defined in equation (3.7) as

Fij = Ff + F}
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In the elastostatic/heat conduction formulation of Chapter 2 this kernel is zero according
to equation (2.3c). This allowed the displacement/temperature vector u* to be removed
- from the formulation leaving an equal number of unknowns and equations for which a
solution can be obtained. In the present formulation, if we once again assume the Poisson
ratio of the insert to be the same as the composite matrix, all but three of the sixteen
components in the F;; kernel vanish. Fy, F, and Fu3 are non-zero when the coefficient of
thermal expansion of the insert is not the same as the matrix. Examining the F;; kernel

more closely the following simplification is possible.

v 0 0 0 FH ull

: - aM—aof |0 0 0 FH ull

- Fiw&)uf@)==—— 1o ¢ o F}g uz, (3.12)
0 0 0 0O ull

- where
uff ull uf are the displacement components of the hole
ul are the temperature component of the hole
FH, FH, FE are components of the F kernel on the hole surface of the matrix, and
of ,a# are the coefficients of thermal expansion of the insert and the matrix, respec-

- tively.

- From the above equation it is clear the displacement about the hole/insert once again

vanishes from the formulation, however, the temperature ¥ (6% = ul’) is present as a

{1

coupling term, in the displacement equations (components 1,2 and 3 of the kernel) and
= vanishes in the temperature equation (component 4). Equation (3.11) may therefore be
uncoupled and written as follows.
Heat conduction system
Outer Surface: G°t°— F°u®+ GtH =0 (3.13a)
- Hole Surface: F'2G°t° — F2Fou® + (FI2G + G™¥)tH =0 (3.13b)
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Thermal elastic system

Outer Surface: G°t°— F°u® + Gt¥ = BoH (3.13¢)
Hole Surface: F2G°t° - FP2F°u® + (F2G + G'?)tH = BMoH (3.13d)
where
B6H = FuH
and
BMgH = FI2FuH (3.14b)

In the heat conduction system the number of unknowns is equal to the number of equa-
tions. The heat conduction system can be solved and the nodal temperatures on the hole
determined using an uncoupled form of equation (3.8b). With the nodal temperatures on
the hole known, the number of unknowns in the thermoelastic equation system is reduced
to exactly the number of equations, and therefore, this system can be solved. With the
use of equation (3.8b) all remaining nodal boundary variables can be determined on the
matrix-insert interface rendering a complete solution to the boundary value problem. Dis-
placement, temperature, traction, flux, stress, or strain measures can now be determined

at any point on the boundary or in the interior of the body as described in chapter 2.
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4. Nonlinear Interface Connections Between the Fiber and the Matrix

4.1 Introduction

In order to accurately analyze a ceramic composite structure the interaction between
the fiber and the composite matrix must be properly modeled. Interface phenomena such
as perfect bonding, progressive debonding (with gap openings), frictional slipping, and
plastic behavior along the matrix-insert interface must be included. The failure mode of
an interface is dependent on the state of stress at the interface. Therefore, the general
mode of failure will be nonlinear and irreversible rendering a path dependent, quasistatic
analysis.

In this chapter the steady-state uncoupled thermoelastic boundary element formula-
tions of chapter 3 is rederived in a form suitable for the inclusion of nonlinear interface
connections. In addition to the perfectly bonded interface, two new types of interface
connections are presented in a general form so as to be interchangeable upon input by the
user. Finally the assembly of the numerically integrated BEM equations is presented and
an incremental algorithm for their solution is described. The elastostatic and steady-state

heat conduction formulations are obtained from the uncoupled thermoelastic formulation.

4.2. Boundary Integral Equation Formulation

The conventional boundary integral equation for displacement/temperature is the
starting point for the steady-state uncoupled thermoelastic ceramic formulation with non-
linear matrix-insert interface connections. The displacement/temperature for a point ¢

inside the elastic composite matrix is
Cs(©ul®) = [ [65(=,10(2) - FY(2,042(3)| a5(e)
N
+3 [ |oieono - Rl (e, 0 ()] 45°@) (4.1)
n=1 s"

ij=1,234
where
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Gij, Fi; are the fundamental solutions of the governing differential equations of the ceramic
matrix of infinite extent [Dargush, 1987]
C,; are constants determined by the geometry at ¢
u;,t; are displacements and tractions
5,5 are the surfaces of the outer boundary of the matrix and the n*" hole (left for fiber),
respectively

N is the number of individual insert fibers

Superscripts 0 and H identify the quantities on the outer surface of the matrix and the
quantities on the surface of the hole, respectively.

The conventional boundary integral equation for displacement can also be written for
each of the N insert fibers. For the displacement/temperature at a point ¢ inside the nth

insert we can write

CL&)ui(6) = /S ) [G{j(z,g)t{(z)— Fé(z,f)u{(z)] dS™(z) (4.2)

ij=1,2,34
G, FL are the fundamental solutions based on material properties of the n** insert
C/; are constants determined by the geometry at ¢ in insert n

u!,t! are displacement and tractions associated with the n'® insert

S™ the surface of the n't insert

We next examine the interface conditions between the composite matrix and the insert.
The difference between the displacement/temperature of the insert and the displacement/
temperature of the insert is defined by a variable d;. The traction/flux on the hole is equal

and opposite to the traction/flux on the insert. Therefore

uf(z) = ul(z) + di(z) (4.3a)
tH(z) = -tl(z) (4.3b)
24



(

e

Substitution of equations (4.3b) into equation (4.2) yields the following modified boundary

integral equation for insert n.
Sy = [ |-Gl enf© - Fite.ul(a)|asm(a (84

Finally adding N insert equations (4.4) to equation (4.1) and invoking equation (4.3a),

yields the modified boundary integral equation for the composite matrix
N
Ci;(O)ui(€) + Y (CH(©)) uil§) = /s [Gg(z,g)t?(z)_ Fg(z,f)u?(z)] dS(z)
n=1
N
[ [G;;-(z,e)d’ (2) = FH(z,)di(z) - ﬁ;;(z,g)u{(z)] 45™(z) 45)
n=l

where

Gh(=.6) = GH(z,6) - (Gl(2.0)"
F3(2,6) = F (2.0 + (Fj(z,)"
For a point in the interior of the matrix
Cii(€)=6; and (CL(€))"=0 foralln (4.6a)
For a point in the interior of the k' insert
Ci(€)=0 and (CL©)" = { 6?,- for n## (4.6b)

For a point on the outer boundary of the matrix (CZ(£) = Ci;(€))

C3(€) is dependent on the geometry at ¢, and

((chEn™=o for all n (4.6¢)
For a point on the k'™ matrix-insert interface (Cf(¢) = Ci;(€))

CHE) + ((Ch©)" = &
(CLE)" =0 for n#k (4.6d)
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For a point ¢ on the k™ matrix-insert interface the left-hand side of equation (4.5) may be
rewritten using equation (4.3a) and (4.6d) as
k ad
CH©OW(©) + (C1(9) "w{(©) + D (C55(6)"uil6)

ngk

= CH(ENL(€) + CH(O)di(€) + (C5(©) ul(€) = 6:5u1(6) + CH(€)di(€) (4.7)

4.3 Interface Constitutive Relationships

4.3.1 Introduction

The interface constitutive relationships of ceramic composite materials are, in general,
nonlinear. This requires that their BEM sélution be found using an incremental (qua-
sistatic) algorithm. Therefore, the linear BEM equations of Section 4.2 are interpreted as
incremental relations and the interface constitutive relationships are defined in terms of

the incremental displacements/temperatures u; and the incremental tractions/fluxes i; as

ii = kade (4.80)
i,j =1 to 3 for elastostatics

i,j = 1 for heat conduction
i,j =1 to 4 for uncoupled thermoelasticity

where kT is the nonlinear constitutive matrix dependent on the current state of stress,
dy =l — i, (4.8b)

ii=tl = —t,H (4.8¢)

)

The elastostatic constitutive relationships that are derived in this section are expressed
using a local coordinate system where the first component corresponds to the direction nor-
mal to the interface and the second and third components correspond to arbitrary tangen-
tial directions on the matrix-insert interface. The local constitutive matrix is transformed

to the global coordinate system when incorporated in the BEM equations as follows

lobal ! 1
(kP)E = aa (kgh) ° am;
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where a,,; is the directional cosine transformation tensor.

4.3.2 Linear Spring Interface Connection
The general form of the linear spring interface connection may be expressed as (kf;
replaces k¥

i = k§;d; (4.9)

In the current elastostatic implementation the special case kf; = kn, k$; = k§3 = k:, and k§; = 0
for i # j, is assumed (see Figure 4.1). k, is the spring constant in the normal direction
and k. is the spring constant in the tangential direction. The general form does not pose
any more difficulty in implementation then the special case, but the additional generality
is usually not required in practice. The limiting form as k, — o and k; — oo approaches
the case of a perfect bond, and k,, = k, = 0 corresponds to a completely debonded interface.
k., — oo and k; = 0 corresponds to a sliding interface with a perfect connection in the normal
direction. Results using the present formulation with values ky, = k; = (E™t"* 4 Ei™er) 4 10°
compared very closely to results obtained for the same problem assuming a perfect bond.
Similar comparisons were found to hold true for problems with &, = k, = 0 verses E™™ =0
(hole solution).

In the heat conduction implementation k;; = —k where k is the thermal conductivity,
k = 0 does not permit heat flow across the interface which is analogous to an insulated hole
and k — oo is analogous to a perfect bond between the insert and the matrix.

The k;; for uncoupled thermoelastic analysis is derived by combining the elastostatic
and heat conduction k;; to form a completely uncoupled k;; matrix ki1 = kn, k22 = ka3 =

ki, k4sa = —k, and k;; = 0 for i # j.

4.3.3 Spring-Friction Nonlinear Interface (Coulomb Friction)

An interface model shown in Figure (4.2) exhibits a linear spring behavior normal to
the interface when the normal tractions are in compression. Linear spring resistance is
also observed in the tangential direction when the principal tangential traction is below
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the slip limit defined by the coulomb friction criteria. When the slip limit is reached the
traction that the interface can sustain in the tangential direction has reached a maximum
and any additional tangential traction will result in an irrecoverable shift of the relative dis-
placexﬁent between the insert and the matrix, and a redistribution of stress (and therefore
interface tractions) is required to bring the structure back in equilibrium. Furthermore,
the model does not support tensile tractions normal to the interface. Instead the tractions
at this point are set to zero through the constitutive relation ki; = 0 (i,j = 1 to 3) and a
gap between the insert and the matrix will form. Once again a redistribution in stress is
required to bring the structure back in equilibrium.

The nonlinear interface constitutive relationship for a point on the interface exhibit-
ing the spring-coulomb friction phenomena can be derived in a manner analogous to the

incremental theory of plasticity [Selvadurai, 1988]. This requires a description and use of
(1) A flow rule relating the irrecoverable nonlinear part of the displacement difference rate
to the traction state at the interface.

(2) A consistency relation requiring the new traction state to lie on the newly formed yield

surface (defined by the hardening rule and yield function).
(3) A yield function defining the limits of elastic behavior, and
(4) A hardening rule defining the subsequent yield surfaces.

The variable for the incremental displacement difference across the interface is assumed

to be composed of an elastic part df and a plastic part &
di=dé+d (4.10)

where the elastic component is related to the interface traction by the linear constitutive
relation defined in Section 4.3.2.
i = k§;dS
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or

£; = k§(d; — dF) (4.11)
Next a flow rule is defined as
=80
P \—
& =iz

where ) is an unknown flow factor dependent on the current state of traction and Q is a

nonlinear potential. Substituting the flow rule into equation (4.11) yields

£ = k§;d; — k5 %?—_ (4.12)
2

The consistency relation is defined as

—{;=0 4.13
ot; ! ( )

Substitution of equation (4.12) into the consistency relationship and rearranging yields

a relationship for A.
10F

A= z at_kfjd'j (4.14)

=i
n B,

— OF Le
where G = gk,

Finally substitution of equation (4.14) into equation (4.12) yields
t; = k{Pd; (4.15)

where

kif = ki — K (4.16)

and

1 8F 8Q
kfj = Ek-e kS

K5 B (4.17)

The nonlinear interface constitutive relationship is complete once F and Q are defined.

Assuming the coulomb friction criteria, the yield function F is given by

F=(24t) 2 4 utn=0 (4.18)
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where 1, is the total traction normal to the interface, t, and t; are the total tangential
tractions and p is the coefficient of friction between the insert and the matrix.

This relation holds only for ¢, < 0. If F < 0, the interface is assumed elastic and a
spring connection is used. If F = 0 the nonlinear interface relation (4.15) is used. F <0
is meaningless in theory, however, since in practice we assume a finite size load step the
function may become slightly positive in which case it is treated as F = 0. When t, 20,
ki; =0 (i,j =1 to 3) is assumed.

This relationship is assumed constant for the entire analysis and therefore to complete
the analogy with classical plasticity, we can say we have zero hardening. The nonlinear

potential @ is assumed to be the magnitude of the principal tangential traction.
Q= (3 +13)'/ (4.19)

If we assume the special elastostatic case described in Section 4.3.2 for kf; where ki1 =
kn, k22 = kas = k:, and kf; = 0 for i # j we can write for kf}
0 0 0 A
kf’ = pknt:g kt{2t:2 ktt:2t‘3 (4'20)
pkats  kedals  kedats
where i, and i3 are the normalized components of total tangential tractions, i.e.

[

- i3
2= W and t3 ==

t BRCEZIRE
In the present heat conduction and uncoupled thermoelastic implementation, only a lin-
ear (uncoupled) relation is allowed between the increment of flux and the temperature

difference rate variable across the interface. This of course will be updated in the newly

proposed work.

4.4 Assembly of Equations for General Matrix-Insert Interface Connections
In the assembly of the perfectly bonded inserts the number of equations in the final
system was reduced by eliminating all unnecessary unknowns from the problem. In the
previous case all unknown displacement/temperature nodal variables on the matrix-insert
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interface were eliminated leaving only the unknown tractions/fluxes. In the present case the

tractions/fluxes will be eliminated retaining only the matrix-insert displacement difference

variables along the interface.

The steady-state uncoupled thermoelastic equations (4.4) and (4.5) can be discretized
and integrated as described in Chapter 2. Therefore, using equations (4.4), (4.6c), and
(4.7) a system of equations can be generated for the nodes on the discretized model of the
composite matrix. The equations for the nodes on the outer boundary of the matrix and

for the nodes on the hole surface can be written separately in matrix notation as:
On the Matrix Outer Surface: GOtC - FOu° 4+ GtH - FHd -Fu' =0 (4.21a)

On the Matrix Hole Surface: G9° — FOu® 4 GtH - FHd ~ Ful = Iu! (4.21b)
where

t° and u° are traction/flux and displacement/temperature vectors on the outer surface

of the composite matrix

tH is the traction/flux vector on the hole

u! is the displacement/temperature vector on the insert

d vector of displacement/temperature difference between the hole and insert

I is the identity matrix

G° and F° matrices contain coefficients from the integration over the outer boundary

G, F and FH matrices contain coefficients from the integration over the hole/insert
Vectors u® and d are arranged in the same order as the equations are written so as to
produce a strong main diagonal in matrices FO and FH.

Equation (4.6¢) is used in writing equation (4.21a). The CZ(£)ul(¢) term is lumped with
its respective (diagonal block) coefficient in matrix F©. The sum of these two terms are

accurately calculated indirectly using the rigid body technique [Banerjee and Butterfield,
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1981]. Equation (4.7) is used in writing equation (4.21b). The Cf(£)di(¢) term is lumped
with its respective (diagonal block) coefficient in matrix F¥ (also calculated by the rigid
body technique). Similarly, the term 6;;u/(€) could be lumped with matrix F, but instead
it is put on the right-hand side (forming an identity matrix I for use in subsequent matrix
algebraic operations. Next, equation (4.5) is written for every shape function node on an
insert, collocating slightly outside the boundary of the insert [at a distance of (1.25)«(radius
of insert)] where C/;(¢) = 0.

Gt -Fl%2u'=0 (4.22)

Superscript I2 identifies the equations written at points located slightly outside the bound-

ary of the inserts. Equation (4.22) can be rewritten as
F?2u! = —G!1%tH (4.23)
Post multiplying equation (4.21b) by matrix F!? of equation (4.23) yields
F12GOt° — FI2FOy° 4+ F12GtH - FI2FHd — F2Fu! = F12u] (4.24)

For efficiency, this operation can be carried out one insert at a time. Equation (4.23) can

now be set equal to equation (4.10). This yields,
F12GOtC - FI2FCu® + GMt¥ - FMd - FP2Fu' = 0 (4.25)
where

GM=F?G+G" and

FM — FIZFH

The nonlinear interface relation t¥ = —K*®Pd is substituted in equation (4.21a) and (4.25)

and noting equations (3.12) and (3.14) the final form of the system can be written as
On Outer Surface: GOtO - FOu® — (GK*P + FH)d = B¢! (4.26a)

On Hole Surface: FI2GOtO — FI2FOy0 — (GMK*P 4+ FM)d = BM¢! (4.26b)
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For each degree of freedom on every node on the outer surface, either the displace-
ment/temperature or traction/flux is specified and on the matrix-insert interface the dis-
placement /temperature difference variable and the insert temperature variable are present.
Therefore the number of unknowns in the system is greater than the number of equations
by exactly the number of nodes on the interface (exceeded due to the insert temperature
variables). However, as was the case in uncoupled thermoelasticity with a perfectly bonded
matrix-insert interface, the B and BM matrices influence only the thermoelastic solution,
i.e., the coeflicients corresponding to the heat conduction equations are zero. Therefore, in
the heat conduction equations these terms do not appear. The heat conduction equation
can be uncoupled from the system in a manner similar to equation (3.13) rendering an
equal number of heat conduction equations and unknowns. The heat conduction system is
solved and the insert nodal temperatures are determined using equation (4.21b). With the
insert nodal temperatures known, the number of unknown in the thermoelastic equation
system is reduced to exactly the number of equations, and therefore the system can be
solved. With the use of equations (4.8) and (4.21b) all remaining nodal boundary vari-
ables can be determined on the matrix-insert interface rendering a complete solution to
the boundary value problem. Displacement, temperature, traction, flux, stress, or strain
measures can now be determined at any point on the boundary or in the interior of the
body as described in Chapter 2.

The elastostatic and steady-state heat conduction formulations are derived from equa-
tion (4.26). Noting the F;; kernel vanishes in elastostatic and heat conduction analysis,
equation (4.21) is used setting matrix F = 0. The final system is similar to equation (4.26)
with B = BM = 0. The number of unknowns are equal to the number of equations in a well

posed problem and the system can be solved in one step.

4.5 Numerical Algorithm for Nonlinear Interface Connections
The nonlinear constitutive relationships are incorporated in the linear BEM equations
and solved using the incremental (quasistatic) algorithm described below.
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Nonlinear Solution Algorithm

(a) The boundary (and body force loading if present) is divided into a number of small
sub-increments. Ten sub-increments have been found to be sufficient.

Initial Load Step (Iterative Start-up Loop):

(b) Assemble the BEM system equation (4.26) as described in Section 4.4 using the in-
terface relations calculated in step (d). In the initial assembly step, linear spring
connections (Section 4.3.2) are assumed at each interface node.

(c) Apply the sub-increment of load to the system equations (4.26).

(d) Determine the traction state at each interface node and derive the appropriate interface
constitutive relation for that node.

- If the normal traction a the interface is positive, assume a gap opening with zero
traction, i.e., k;f =0

- If F < 0 assume a spring connection (Section 4.3.2)

- If F < 0 assume a nonlinear connection (Section 4.3.3) and evaluate the constitutive
relationship using the current traction state (from current loading).

(e) Changing the interface connections from a linear spring to nonlinear relationship in the
first sub-load step may cause a major redistribution in the tractions on the interface.
Therefore, the constitutive relations calculated in step (c¢) will change. Repeat step
(b), (¢) and (d) until a coverage solution is achieved for the first load step.

Subsequent Load Steps:

(f) Steps (b), (c), and (d) are repeated once for each additional load step. In general,
iteration within a subsequent sub-load step is not required since the constitutive re-
lationships at interface nodes change in a gradual manner once the start-up loop is
complete. The solution of any sub-increment is the accumulation of all previous sub-
load steps. It is this current solution that is used in step (d) to evaluate the current

interface constitutive relationships used in the next sub-incremental load step (step
(c))-
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Fig. 4.2. Nonlinear Spring/ Coulomb-frictional Interface Connection
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5. TRANSIENT HEAT CONDUCTION AND TRANSIENT UNCOUPLED

THERMOELASTIC BEM FORMULATIONS

5.1 Introduction

The analysis of a body in a transient state is inherently more complicated than a
steady-state analysis. The boundary element formulation for transient analysis contains
convoluted integrals which must be integrated in time as well as in space. Therefore, a
transient BEM analysis is expected to be more complicated and more expensive than its
steady-state counterpart. To compound these difficulties, the cost saving techniques devel-
oped for the steady-state ceramic composite analyses cannot be employed for the transient
case. First, the efficient modified boundary integral formulations and the resultant as-
sembly schemes of Chapters 2-4 do not lend themselves to transient insert formulations
for composites with general material properties. Secondly, due to the complexity of the
transient kernel functions, the integration about the circumference of the insert must now
be carried out using numerical integration, thus adding to the cost of the analysis.

Nevertheless, an efficient numerical integration scheme as well as an efficient assembly
algorithm have been derived for the transient heat conduction and thermoelastic BEM
analyses. In the assembly algorithm the equations of the inserts are backsubstituted into
the equation system of the composite matrix, hence, reducing the size of the overall system.
This is carried out prior to decomposition at a point when the equations for each insert
can be handled individually in the most efficient manner. This assembly, as well as the
decomposition, is required only for the initial time step. Later time steps require only a

new calculation of the system’s right-hand side.

5.2 Transient Boundary Integral Equation Formulation
The transient, uncoupled thermoelastic boundary integral equation (Dargush and Baner-
jee, 1991) for the displacement (and temperature) at a point ¢ in a composite matrix is
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Coal€ualé, )= [ [g0a +18(X,0) = fpo + uG(X,)] dS(X)

M
+Y /SM [96a * 15 (X, 1) — foa % uf (X,1)] dS™(X) (5.1)

where
o, B indices varying from 1 to 4 for uncoupled thermoelasticity and equaled to 4 for
heat conduction
Cpo constants determined by the geometry at ¢
up, s generalized displacement and traction
ug = [u1, ug, ua, 6]
g =[ty, t2, t3, q|T
8,9 temperature, heat flux
9ap, fap generalized displacement and traction kernels
5,5™ are the surfaces of the outer boundary of the matrix and the mth hole (left for
fiber)
M is the number of individual fibers

and, for example

t
gﬁa*tﬁzf 95X, €, T p(X, T)dT
0

denotes a Riemann convolution integral.
Superscripts O and H are used to highlight the quantities associated with the outer
surface of the matrix and the quantities associated with the surface of the hole, respectively.

The boundary integral equation for mth insert can be written as
Cpal§)up(€) = /SM [9ha * th(X, 1) = fio* up(X,1)] dS™(X) (5.2)

where
9par f4o are the fundamental solutions for a body with material properties corresponding
to the mth insert.
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Cp. are constants determined by the geometry at ¢ in insert m
ul,t} are the generalized displacement and tractions associated with the mth insert

S™ the surface of the mth insert

In principle, at each instant of time progressing from time zero, these equations can be
written at every point on the respective boundary. The collection of the resulting equations
could then be solved simultaneously, producing exact values for all the unknown boundary
quantities. In reality, of course, discretization is needed to limit this process to a finite
number of equations and unknowns. Techniques useful for the discretization of (5.1) and

(5.2) are the subject of the following section.

5.3 Numerical Implementation

The boundary integral equations (5.1) and (5.2) developed in the last section, are exact
statements. No approximations have been introduced other than those used to formulate
the boundary value problem. However, in order to apply (5.1) and (5.2) for the solution
of practical engineering problems, approximations are required in both time and space. In
this section, an overview of a general-purpose, state-of-the-art numerical implementation

is presented for transient analysis.

5.3.1 Temporal Discretization

Consider, first, the time integrals represented in (5.1) and (5.2) as convolutions. Clearly,
without any loss of precision, the time interval from zero to ¢ can be divided into N equal
increments of duration at At.

By assuming that the primary field variables, t5 and ug, are constant within each At
time increment, these quantities can be brought outside of the time integral. That is,

N nAt
goa * (X, 1) = Z tg(X)‘/; Hac dga(X — €, t —1)dT (5.3¢)

n=1

nAt

N
faaxup(X,t) = E uB(X)/( foa(X — &t — 7)dT (5.3b)
n=1 t

-na
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where the superscript on the generalized tractions and displacements represents the time
increment number. Notice, also, that within an increment, these primary field variables
are now only functions of position. Since the integrands remaining in (5.3) are known in
explicit form from the fundamental solutions, the required temporal integration can be

performed analytically, and written as

ndt

GYFn(X —§) = /( L SeX et (5.4a)

nat
B == [ faalX - 1= )i (5.48)
(n—1)At

These kernel functions, G3,(X - ¢) and FZ (X —¢), are detailed in Appendix B. Combining

(5.3) and (5.4) with (5.1) and (5.2) produces
N

Coal€)u(€) =Y { J.laBorex - ax) - FL = (X — 0] ds(x)

n=1

M
+ El / GN+‘"" X —EM3(X) = FiH (X - e)ug(X)] dS"‘(X)} (5.5a)

and for the mth insert
N
Caat@§© = 3 { [ o810 - 0300 - B (x - 0] dsm0 ) 699
n=1

which are the boundary integral statements after the application of the temporal discretiza-

tion.

5.3.2 Spatial Discretization

With the use of generalized primary variables and the incorporation of a piecewise
constant time stepping algorithm, the boundary integral equation (5.5) begins to show a
strong resemblance to the equations of the steady-state analyses, particularly for the initial
time step (i.e., N = 1). In this subsection, those similarities will be exploited to develop
the spatial discretization for the uncoupled quasistatic problem. This approximate spatial
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representation will, subsequently, permit numerical evaluation of the surface integrals ap-
pearing in (5.5). The techniques described here, actually, originated in the finite element
literature, but were later applied to boundary elements by Lachat and Watson (1976).

The process begins by subdividing the entire surface of the body (including the inserts)
into individual elements of relatively simple shapes. The geometry of each element is, then,
completely defined by the coordinates of the nodal points and associated interpolation
functions, as described in Chapter 2.

In the present work, the geometry is exclusively defined by quadratic shape functions.
On the other hand, the variation of the primary quantities can be described, within an ele-
ment, by either quadratic or linear shape functions. (The introduction of linear variations
proves computationally advantageous in some instances.)

Once this spatial discretization has been accomplished and the body has been subdi-
vided into @ boundary elements and P insert elements, the boundary integral equation can
be rewritten for the matrix as

N Q

Coa®u© = {3 [ [ 68 =m0x0) - 905 (x0))]
n=1 * ¢=1 59
Q .
-3/ F,!Y:‘-"(X(o-s)Lw(c)dsq(X(c»] 3
=1 Lse
P
43 / GN“‘"(X(C)-E)Nu(C)Mv(f?)dS"(X(C),ﬁ’)] o,
p=1
P .
-X [0 - oMM 0 (X(@,0)| | (580)
= Use
and
N , P
GO =3 { T [ [ exox) - z)Nu(c)Mvw)dSNX(o,a)] .,
n=1 *p=l s?
P
-3 [ [ Fnnx (0 - e)Nw(c)M-,(o)dsp(X«),o)] M} (5.65)
p=1 H/5*
where
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Q is the number of boundary elements on the outer surface of the composite matrix
in the region,
P is the number of insert elements in the region,

L, represents a two-dimensional shape function,

N, represents a one-dimensional shape function,

M, is the circular shape function defined in Chapter 2,

t,u are nodal values of generalized traction and displacement, respectively.

In the above equation, the nodal quantities ¢3, and uj, were brought outside the surface
integrals. This positioning of the nodal primary variables outside the integrals is, of course,
a key step since now the integrands contain only known functions. However, before dis-
cussing the techniques used to numerically evaluate these integrals, a brief discussion of
the singularities present in the kernels G3, and Fj, is in order.

The fundamental solutions to the uncoupled quasistatic problem contain singularities
when the load point and field point coincide, that is, is when r = 0. The same is true of G3,
and FJ,, since these kernels are derived directly from the fundamental solutions. Series
expansions of terms present in the evolution functions can be used to deduce the level of
singularities existing in the kernels.

A number of observations concerning the results of these expansions should be men-
tioned. First, as would be expected Fl; has a stronger level of singularity than does the
corresponding Gl;, since an additional derivative is involved in obtaining F}; from Ggg.
Second, the coupling terms do not have as high degree of singularity as do the correspond-
ing non-coupling terms. Third, all of the kernel functions for the first time step could
actually be rewritten as a sum of steady-state and transient components. That is,

Gop= ""Gapt+ "Gop

Flz= *Fop+ YFlg
Then, the singularity is completely contained in the steady-state portion. Furthermore,
the singularity in G}; and F; is precisely equal to that for elastostatics, while G}, and Fg,
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singularities are identical to those for potential flow. This observation is critical in the
numerical integration of the F,s kernel to be discussed in the next subsection. However,
from a physical standpoint, this means that, at any time ¢, the closer one moves toward the
load point, the closer the quasistatic response field corresponds with a steady-state field.
Eventually, when the sampling and load points coincide, the quasistatic and steady-state
responses are indistinguishable. As a final item, after careful examination of Appendix
B, it is evident that the steady-state components in the kernels G7; and FZ,, with n > 1,
vanish. In that case, all that remains is a transient portion that contains no singularities.

Thus, all singularities reside in the **G.g and **F,s components of G, ; and FJ;, respectively.

5.3.3 Numerical Integration

Having clarified the potential singularities present in the coupled kernels, it is now
possible to consider the evaluation of the integrals in equation (5.6).

To assist in this endeavor, the following three distinct categories can be identified.

(1) The point ¢ does not lie on the element m.

(2) The point ¢ lies on the element m, but only non-singular or weakly singular integrals
are involved.

(3) The point lies on the element m, and the integral is strongly singular.

In practical problems involving many elements, it is evident that most of the integration
occurring in equation (5.6) will be of the category (1) variety. In this case, the integrand
is always non-singular, and standard Gaussian quadrature formulas can be employed. So-
phisticated error control routines are needed, however, to minimize the computational
effort for a certain level of accuracy. This non-singular integration is the most expensive
part of a boundary element analysis, and, consequently, must be optimized to achieve an
efficient solution. In the present implementation, error estimates, based upon the work of
Stroud and Secrest (1966), are employed to automatically select the proper order of the
quadrature rule. Additionally, to improve accuracy in a cost-effective manner, a graded
subdivision of the element is incorporated, especially when ¢ is nearby.

42



The integration over the surface of the hole and insert elements must be carried out
using numerical integration. The complexity of the transient kernel function prohibits an
analytic integration about the circumference of the insert in a manner similar to the steady-
state case. Therefore, numerical integration must be performed in both the longitudinal
and the circumferential directions. An efficient integration scheme is adopted in which one-
dimensional Gaussian integration formulas are applied independently in the two directions.
This allows the subsegmentation and mapping, as well as the order of the Gaussian formulas
to vary independently in the two directions so that the accuracy and the cost of the
integration can be optimized.

Turning next to category (2), one finds that again Gaussian quadrature is applicable,
however, a somewhat modified scheme must be utilized to evaluate the weakly singular
integrals. This is accomplished through element subsegmentation about the singular point
so that the product of shape function, Jacobian and kernel remains well behaved.

Unfortunately, the remaining strongly singular integrals of category (3) exist only in
the Cauchy principal value sense and cannot, in general, be evaluated numerically, with
sufficient precision. It should be noted that this apparent stumbling block is limited to the
strongly singular portions, **F;; and ** Fgq, of the F1; kernel. The remainder of F 4, including
trFL and *"F},, can be computed using the procedures outlined for category (2). However,
as will be discussed in the next subsection, even category (3) **F;; and **Fys kernels can be
accurately determined by employing an indirect ‘rigid body’ method originally developed
by Cruse (1974).

5.3.4 Assembly of Equations

The complete discretization of the boundary integral equation, in both time and space,
has been described, along with the techniques required for numerical integration of the
kernels. Now, a system of algebraic equations can be developed to permit the approximate
solution of the original quasistatic problem. This is accomplished by systematically writing
(5.6) at each node on the outer surface, on the surface of the hole, and on the surface of
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the insert. The ensuing nodal collocation process, then produces a global set of equations
given here in matrix form, for time N.

For the nodes on matrix:
[GOI{t8)} — [FA{uB)} + [GHI{th} - [Fa){ul} = {DV} (5.7a)
For the nodes on the inserts:
(G} - (F){u]'} = {D]) (5.76)

where {DV} and {D}} are the values of the convolution from the previous N -1 time steps

defined as

N-1
—{DV} = > {IGEHta} - [FE " 1{ud)} + (G ek} - [FEF "HuR}) (5.8a)
and
N-1
—{DY} = > {[GTH e} - [FRH " {u]}) (5.80)

In these equations, subscripts O, H and I are used to denote the quantities associated with
the outer surface of the matrix, the surface of the hole containing the insert, and surface
of the insert, respectively. Furthermore, the Cas(¢) term of each equation is lumped with
the respective coefficient in the F! matrix.

To calculate the coefficients of the singular points by the ‘rigid body’ technique, con-

sider now, the first step. Thus, for N = 1, equation(5.7) becomes
[GE)Htb) - [Fcla]{ulo} +[Gul{th} - [FAHuk} = {0} (5.90)

[G1{th} - [Fil{ui} = {0}. (5.99)

At this point, the coefficients of the F matrices corresponding to the singular node of the
equations has not been completely determined due to the strongly singular nature of the
kernel function. To determine the values of these coeflicients, we first decompose the F;;
kernel into transient and steady-state parts. Following Cruse (1974) and, later Banerjee
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et al (1986) in elastodynamics, the steady-state part of the coefficients can be calculated
indirectly by imposing a uniform ‘rigid body’ generalized displacement field on the same
body under steady-state conditions. The steady-state part of the singular coefficients
are simply the summation of the non-singular, steady-state coefficients. The remaining
transient portion of the coefficients are non-singular, and hence can be evaluated to any
desired precision.

For an insert that is perfectly bonded to the matrix, the displacement of the surface
on the hole containing the insert is equal to the displacement of the surface of the insert,

and the surface tractions are equal in magnitude but opposite in direction.
{u}} = {u7} (5.10a)

{15} = - {17} (5.108)

Substitution of equation (5.10) into equations (5.7b) and (5.8b) and rearranging yields

(8} = ~[E)F ) - (H)D) (5.11a)
—1
{D'} = Z (G ="t} + [FY " {uR ) (5.118)
n=1
where
[H=[G]]"}

Note, since the boundary integral equation for each insert is independent of the equations
for the other inserts, the inversion of [G}] can be reduced to a number of smaller inversions,
one corresponding to each insert.

Equation (5.11a) can now be back substituted in equation (5.7a) to yield
[GH{tD'} - [FE{uBY - [FM{u} = {DV} + [GHIHI{ DY) (5.12)

where
[FM) = (GHIHI[F]] + [Fg)
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In a well-posed problem, at time At, the set of global generalized nodal displacements
and tractions will contain exactly (4 x P) unknown components (and P unknowns for heat
conduction analysis).

Then, as the final stage in the assembly process, equation (5.12) can be arranged to

form

[A'="} = [B'Hy™} + {DV} + [GRIHN{ DT} (5.13)

in which
{z¥} unknown components of {u«N} and {tV}
{yV} known components of {uN} and {t"}
[41,][B'] associated matrices
Note, the entire matrix [FM] becomes part of [4!] since all the (generalized) displacements

on the interface are unknown quantities.

5.3.5 Solution

A solution of equation (5.13) may be achieved for any time using a time marching
algorithm. For the initial time N = 1, {D'} = {D}} = {0} and equation (5.13) can be
rewritten as

[4"){='} = [B'){y'} (5.14)

To obtain a solution for the unknown nodal quantities of this equation, a decomposition
of matrix [A!] is required. In general, [A!] is a densely populated, unsymmetric matrix.
The out-of-core solver, utilized here, was developed originally for elastostatics from the
LINPACK software package (Dongarra et al, 1979) and operates on a submatrix level.
Within each submatrix, Gaussian elimination with single pivoting reduces the block to
upper triangular form. The final decomposed form of [4!] is stored in a direct-access file
for reuse in subsequent time steps. Backsubstitution then completes the determination of
{«'}. Additional information on this solver is available in Banerjee et al (1985).

After returning from the solver routines, the entire nodal response vectors, {u!} and
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{t'}, at time At are known. For solutions at later times, a simple marching algorithm is
employed. Assuming that the same set of nodal components are unknown as in (5.14) for

the first time step, equation (5.13) is reformulated as
[41){2?} = [B'{y*} + {D?} + [GLUH{ D]} (5.15)

Since the right-hand side contains only known quantities, (5.15) can be solved for {z?}.
However, the decomposed form of [4!] already exists on a direct-access file, so only the
relatively inexpensive backsubstitution phase is required for the solution.

The generalization of (5.15) to any time step N is simply equation (5.13)
[41{="} = [B'){y"} + {D"} + [GHIHNDT) (5.16)

in which the vectors {DV} and {D}} contain summations which represent the effect of past
events. By systematically storing all of the matrices and nodal response vectors computed
during the marching process, surprisingly little computing time is required at each new
time step. In fact, for any time step béyond the first, the only major computational task
is the integration needed for form [GV] and [F"). Even this process is somewhat simplified,
since now the kernels are non-singular. Also, as time marches on, the effect of events that
occurred during the first time step diminishes. Consequently, the terms containing [GV]
and [FV] will eventually become insignificant compared to those associated with recent
events. Once that point is reached, further integration is unnecessary, and a significant
reduction in the computing effort per time step can be achieved.

It should be emphasized that the entire boundary element method developed, in this
section, has involved surface quantities exclusively. A complete solution to the well-posed
linear uncoupled quasistatic problem with composite inserts can be obtained in terms
of the nodal response vectors, without the need for any volume discretization. In many
practical situations, however, additional information, such as, the temperature at interior
locations or the stress at points on the boundary, is required. The next section discusses

the calculations of these quantities.
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5.4 Interior Quantities

Once equation (5.16) is solved, at any time step, the complete set of nodal displace-
ments and tractions are known. Subsequently, the response at points within the body can
be calculated in a straightforward manner. For any point ¢ in the interior, the generalized
displacement can be determined from (5.6a) or (5.6b) with Cpa = 6ga. Now, all the nodal
variables on the right-hand side are known, and, as long as ¢ is not on the boundary nor
on the interface between the insert and the matrix. The kernel functions in (5.6) remain
non-singular. However, when ¢ is on the boundary or on the interface, the strong singular-
ity in *Fse prohibits accurate evaluation of the generalized displacement via (5.6), and an
alternate approach is required. The apparent dilemma is easily resolved by recalling that
the variation of surface quantities is completely defined by the elemental shape functions.

Thus, for points on the outer boundary of the matrix, the desired relationship is simply
Ul (§) = Lu(C)ul, (5.17a)

Where L, are the shape functions for the appropriate element and ¢ are the intrinsic coor-
dinates corresponding to ¢ within that element. Obviously, from (5.17), neither integration
nor the explicit contribution of past events are needed to evaluate generalized boundary
displacements.

In many problems, additional quantities, such as heat flux and stress, are also impor-

tant. The boundary integral equation for heat flux, can be written

{ 2 [ [ Eirx - E)Lw(C)dS"(X(C))] B

D= (X(C) - s)Lw(c)dsq(X(c))] R

L~}
—

-

n=1

-]
-

A
+ )E [ Eggt'™™(X(0) - s)Nw(c)Mv(a)dSP(X(c»] 13r
I

DI (X(¢) - e)Nw(c)Mw(e)dsp(x«»] M} (5.18)
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where

L GB(X () - )

EGei(X(Q) —¢&) =~ %, (5.19a)
BF(X(¢) -
Diei(X($) - &) = —k—ﬁ%g—) (5.190)

A similar equation can be written for the heat flux inside an insert. This is valid for interior
points, whereas, when ¢ is on the boundary, the shape functions can again be used. In this

latter case,

Lu(Q)el = ni(€)al (€) (5.20a)

dL.(C) BN 1 87—'1 N(E)

5 “¥ 5 (5.20b)

which can be solved for boundary flux. Meanwhile, interior stresses can be evaluated from

N Q

N = N+41-n - n
o2(e) 2_)1{;[ [ v e)Lw(c)dS"(X(c))] 3.
Q
-3 [[ oo - L0 x)]
g=1"
P .
+> L ng;’l'”(z(()-€)Nw(C)Mv(9)d5p(x(C))] 2.
=1 "
pP i
S [ DRG0 - 9N (OM 0352100 (521
p=15*
in which
n 2}11/ aGﬁg BG’\C 8Gn
Epi;(X(Q) - &)= 5z.7 ET +#( 3Ef + 3% ) - B6;;G (5.220)
oFy oFN  oFy, i
D3;(X(() - €)= 61_1 8;’” <35 + ag?) — B Fg. (5.22b)

A similar equation could be derived if stress measurements are required inside an insert.
Equation (5.22) is, of course, developed from (5.6). Since strong kernel singularities appear
when (5.22) is written for outer boundary points, an alternate procedure is needed to
determine surface stress. This alternate scheme exploits the interrelationships between
generalized displacement, traction, and stress and is the straightforward extension of the
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technique typically used in elastostatic implementation (Dargush and Banerjee, 1990).

Specifically, the following can be obtained

n;(€)oly = Lu(Oth (5.23a)

De¢.
o5 (§) = —Z= (ulli(©) + ulh(©)) = —Bbi; Lu(C)ubl (5.23b)

8¢ Y 0w (5.23¢)

in which «}, is obviously the nodal temperatures, and,
ijkl = A&ijfskl + 2#6;};5_71

Equations (5.23) form an independent set that can be resolved numerically for ¢f}(¢) and
uM,(€) completely in terms of known nodal quantities uX, and t,, without the need for kernel
integration nor convolution. Notice, however, that shape function derivatives appear in
(5.23c), thus constraining the representation of stress on the surface element to something
less than full quadratic variation. The interior stress kernel functions, defined by (5.22)

are also detailed in Appendix B.
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6. COMPUTER PROGRAM DEVELOPMENT

6.1 Introduction

The goal of the computer program developed for ceramic composites is the accurate and
efficient implementation of the formulation described in Chapters 2-5. Of equal importance
is the degree of generality required in the definition of component geometry, loading and
material properties. This is necessary if the program is to be applicable to real problems
in the aerospace industry.

For this reason the ceramic composite formulation has been implemented in the three-
dimensional boundary element computer code ‘BEST3D’ (Boundary Element Stress Tech-
nology - Three-dimensional) which was developed for NASA by Pratt and Whitney and
SUNY/Buffalo under contract NAS 3-23697. Since its development, BEST3D has been
proven to be a highly accurate and numerically efficient boundary element program.

The development of the computer program ‘Composite-BEST’ is discussed in the fol-

lowing sections.

6.2 Program Structure

Composite-BEST is designed to be a fully general ceramic composite analysis sys-
tem employing the boundary element method. The program is written using standard
FORTRAN 77. Development has been carried out at SUNY /Buffalo on an HP 9000 mini-
computer, a SUN-4 workstation, and a SUN Sparcstation-1. The nature of the method
is such that, for any realistic problem, not all required data can reside simultaneously in
core. For this reason extensive use is made of both sequential and direct access scratch
files.

The program first executes an input segment. After the input has been processed,
the surface integrals are calculated and assembled into the set of system equations using
specified boundary conditions, followed by the insert assembly and the inclusion of the
insert equations in the general system. The system matrix is then decomposed and saved
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on disk, followed by the calculation of the solution vector. The full displacement and
traction (and/or temperature and flux) solution on each boundary element and insert
element is then reconstructed from the solution vector. In a time dependent problem the
process of constructing the load vector for the system equations is repeated at each time
step, but the integration, formation and decomposition of the system matrix are done
only once. However, in an analysis with nonlinear matrix-insert interface connections, the
assembly and decomposition must be carried out several times.

The current program limits are as follows:

20 time points (solutions for different loadings)

15 generic modeling regions (GMR)
600 elements (300 elements per GMR)

100 inserts per generic modeling region

500 inserts per problem

2500 modeling nodes

1200 source points (600 source points per GMR)

Various aspects of the computer program are discussed below.

6.3 Program Input
The input for Composite-BEST is free field. Meaningful keywords are used to identify

data types and to name particular data sets. The input is divided into five types:

1. Case Control Cards

The case control cards define global characteristics of the problem. In addition to the
problem title, the times for multiple time steps are defined. The reading or writing of
restart data is also defined at this point. The restart facility allows one to change

the arrangements to fibers without recalculating the various coefficients.
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2. Material Property Definition
The material property input allows the definition of material properties for a variety
of materials. The Young’s modulus can be prescribed in tabular form for a user-defined

set of temperatures. Temperature independent values of Poisson’s ratio are also defined.

3. Geometry Input

Geometry input is defined one GMR (generic modeling region, or subregion) at a time.
To initiate the input, a tag is provided to identify the GMR, a material name and reference
temperature are defined to allow initialization of material properties.

The next block of geometry input consists of the Cartesian coordinates of the user
input points for the outer surface geometry definition of the composite matrix, together
with identifiers (normally positive integers) for these geometric nodes.

Following the definition of an initial set of nodal points, the surface connectivity of the
outer surface of the composite matrix is defined through the input of one or more named
surfaces. Each surface is made up of a number of elements, with each element defined
in terms of several geometric nodes. Three sided elements, defined using six rather than
eight geometric nodes, are used for mesh transition purposes. The terms quadrilateral
and triangle are normally used to refer to the eight and six noded elements, although the
real geometry represented is, in general, a nonplanar surface patch. Seven and nine noded
elements are made available by adding a central node to the six or eight noded elements.

Over each element the variation of displacement and traction (and/or temperature
and flux) can be defined using either the linear or quadratic shape functions. Linear and
quadratic elements can share a common side, which is then constrained to have linear
displacement and traction (and/or temperature and flux) variation.

Finally an option is available to allow quadratic functional variation (8 or 6 nodes)
to be used in conjunction with linear geometry (4 or 3 nodes). In this case the program
generates the additional nodes automatically at mid-point of the sides. The characteristics
of the various element types are summarized below.
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Geometry Displacement/Traction Nodes
Surface Element Type Nodes (and/or Temperature/Flux Nodes)

Linear Quadrilateral 8or9 4
Linear Triangle Gor7 3
Quadratic Quadrilateral 8or9 8or9
Quadratic Triangle 6or7 6 or 7
Quadratic Quadrilateral 4 ) 8
Quadratic Triangle 3 6

Following the definition for the composite matrix outer surface, the embedded inserts
are then defined. These are defined as curvilinear line elements with a prescribed radius
of the cross-section. The inserts are generally straight, however as noted, curved inserts
are also allowed. The user first defines the nodal coordinates of the centerline of the
insert. Thereafter, the radius and the insert connectivity is defined. Linear and quadratic
elements are available for both geometry and functional variation, however, quadratic
functional variation over linear geometry is not presently available. The various options

for the insert elements are summarized below.

Geometry Displacement /Traction Nodes
Insert Element Type Nodes (and/or Temperature/Flux Nodes)
Linear-Linear 2 2
Quadratic-Linear 3 2
Quadratic-Quadratic 3 3

Note only the surface of the insert needs to be defined, i.e., the hole in the composite

matrix which encompasses the insert does not have to be explicitly defined.

4. Interface Conditions

The interface input describes the connection of surfaces or elements of one region to
another and between the matrix and the inserts. Special types of matrix-insert interface
conditions which are available presently include fully;bonded and sliding contact (including

coulomb friction) and springs.
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5. Boundary Condition Input

The final input section provides for the definition of boundary conditions, as functions
of both position and time. Data can be input for an entire surface, or for a subset (ele-
ments or nodes) of a surface. Input can be in global coordinates, or can define rollers or
pressure (or flux) in the local coordinate system. Input simplifications are available for
the frequently occurring cases of boundary data which is constant with respect to space
and/or time variation. Each boundary condition set can be defined at a different set of

times.

6.4 Surface Integral Calculation

Following the processing of the input data, the surface integrals occurring in equations
(2.6), (2.7), (5.6), (5.18) and (5.21) are evaluated numerically. This is the most time
consuming portion of the analyses. In Composite-BEST the results of these integrations
are stored as they are calculated, rather than being assembled into the final equation system
immediately. Although this is somewhat more costly in terms of storage and CPU (central
processing unit) time, it has led to much greater clarity in the writing of Composite-BEST.
In addition, it provides much greater flexibility in the implementation of various restart
and boundary condition options.

The calculations proceed first by GMR (generic modeling region), then by source point
(the equation being constructed) and finally by surface element and insert element. The
results for each source point element pair are written to disk. All of the calculations are
carried out and stored in the global (Cartesian) coordinate system.

The integration of the BEM equations is the most complex part of the code. In this
process either singular or nonsingular integrals can be encountered. The integrals are
singular if the source point for the equations being constructed lies on the element being
integrated. Otherwise, the integrals are nonsingular, although numerical evaluation is still
difficult if the source point and the element being integrated are close together.

In both the singular and nonsingular cases Gaussian integration is used. The basic
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technique is developed in Banerjee and Butterfield, 1981. In the nonsingular case an
approximate error estimate for the integral was developed based on the work of Stroud
and Secrest (1966). This allows the determination of element subdivisions and orders of
Gaussian integration which will retain a consistent level of error throughout the structure.
Numerical tests have shown that the use of 3, 4 and 5 point Gauss rules provide the best
combination of accuracy and efficiency. In the present code the 4 point rule is used for
nonsingular integration, and error is controlled through element subdivision. The origin of
the element subdivision is taken to be the closest point to the source point on the element

being integrated.

If the source point is very close to the element being integrated, the use of a uniform
subdivision of the element can lead to excessive computing time. This frequently happens
in the case of aerospace structures, due either to mesh transitions or to the analysis of
thin walled structures. In order to improve efficiency, while retaining accuracy, a graded
element subdivision was employed. Based on one-dimensional tests, it was found that
the subelement divisions could be allowed to grow geometrically away from the origin of
the element subdivision. Numerical tests on a complex three-dimensional problem have
shown that a mesh expansion factor as high as 4.0 can be employed without significant

degradation of accuracy.

In each case of singular integration (source point on the elements being integrated)
the element is first divided into subelements. The integration over each subelement is
carried out using a Jacobian transformation in mapping. This coordinate transformation
produces nonsingular behavior in all except one of the required integrals. Normal Gauss
rules can then be employed. The remaining integral (that of the traction kernel F;; times
the isoparametric shape function which is 1.0 at the source point) is still singular, and
cannot be numerically evaluated with reasonable efficiency and accuracy. Its calculation is
carried out indirectly, using the fact that the stresses due to a rigid body translation are
zero (Lachat and Watson, 1976). It has been found that subdivision in the circumferential
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direction of a two-dimensional surface element is required to preserve accuracy in the
singular integration of the outer surface. A maximum included angle of 15 degrees is used.
Subdivision in the radial direction has not been required.

The integrals required for calculation of displacement, stress, temperature, and flux at
interior points are of the same type as those involved in the generation of the system equa-
tions, except that only nonsingular integrals are involved. If the source point involved is
located on the surface of the body, then numerical integration is not required. Instead, the
required quantities are calculated using the displacements and tractions (or temperature
and flux) on the element (or elements) containing the source point, as discussed in Section

2.9.

6.5 System Matrix Assembly

The first step in the assembly process is the reduction of the rectangular matrix of
F integrals to a square matrix. This matrix is the prototype of the system matrix. The
columns of the matrix are transformed or replaced, as required by the boundary conditions,
as the assembly process proceeds.

The next step in the process is the incorporation of the insert equations in the system.
As was described in detail for each specific analysis in Chapters 2-5, the insert assembly
consists of an insert by insert matrix multiplication and backsubstitution. The backsub-
stitution minimizes the number of equations required in the system by eliminating some
of the unknown quantities on the inserts.

A key problem in the entire process is the proper definition of appropriate coordinate
systems, on a nodal basis. This is a problem common in any direct boundary element
method which treats structures with nonsmooth surfaces. It arises because the tractions
at a point are not uniquely determined unless the normal direction to the surface varies
continuously at the point in question.

The original surface integral calculations are all done in global coordinates. If the
displacement (or temperature) boundary condition is specified at a given node, in global
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coordinates, then no new coordinate system definition is required. It is only necessary to
keep track of the subset of elements, containing the given node, on which the fixed dis-
placement (or temperature) is to be reacted. However, if a displacement (or temperature)
is specified in a nonglobal direction at a given node, then a new nodal coordinate system
must be defined and, potentially, updated as further boundary conditions are processed.
The associated nonzero reactions must then be expressed in the new coordinate system.
Following this preparatory work, the final assembly of the system equations is carried

out. It is performed in three major steps:

1. Transformation of the columns of the matrices to appropriate local coordinate systems

and incorporation of any boundary conditions involving springs.
2. Incorporation of compatibility and equilibrium conditions on interfaces.

3. Application of specified displacements and tractions (and/or temperatures and fluxes).

Two particular features of the equation assembly deserve special comment. First,
in multi-GMR problems the system matrix is not full. Rather it can be thought of as
consisting of an NxN array of submatrices, each of which is either fully populated or
completely zero. Only the nonzero portions of the system equations are preserved during
system matrix assembly. In order éo imprové the numerical conditioning of the system
matrix for the solution process, the columns are reordered so that the variables from the
two regions, lying on the same interface, are as close together as possible.

Second, rather than simply assembling an explicit load vector at each time point in the
solution process, load vector coefficient matrices are assembled and stored. These allow
the updating of the load vector at any required time point simply by interpolating the
time dependent boundary conditions and performing a matrix multiplication. A Similar

process is used in the calculation of interior and boundary stresses.
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6.6 System Equation Solution

The solver employed in Composite-BEST operates at the submatrix level, using soft-
ware from the LINPACK package (Dongarra, 1979) to carry out all operations on subma-
trices. The system matrix is stored, by submatrices, on a direct access file. The decom-
position process is a Gaussian reduction to upper triangular (submatrix) form. The row
operations required during the decomposition are stored in the space originally occupied
by the lower triangle of the system matrix. Pivoting of rows within diagonal submatrices
is permitted.

The calculation of the solution vector is carried out by a separate subroutine, using the
decomposed form of the system matrix from the direct access file. The process of repeated

solution, required for problems with multi-time steps, is highly efficient.

6.7 Nonlinear Solution Process

The nonlinear solution algorithm starts with an elastic analysis (with linear elastic
spring interface connection between the matrix and the insert) of the problem for the
first loading increment (complete with the specified boundary and body force loading).
At the end of the elastic increment the state variables are calculated and the nonlinear
constitutive interface relations are established. The difference between the actual tractions
and the elastic (or previous) tractions is estimated. A new equation system is assembled
with the calculated nonlinear constitutive interface relations. The process is essentially
repeated until the constitutive equations yield tractions that are negligibly different from
the previous step. A new loading increment is taken and the process is repeated for each

subsequent increment.

6.8 Output Description
The output from Composite-BEST is relatively straightforward. It consists of ten

sections, as follows:

1. Complete echo of the input data set.
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10.

Summary of case control and material property input.

Complete definition for each GMR, including all surface insert nodes, surface and insert
elements.

Complete summary for each interface and boundary condition set, including the ele-
ments and nodes affected.

Boundary solution (on an element basis), including displacements and tractions (and/
or temperature and fluxes) at each node of each element.

The resultant load on each element and on the entire GMR is calculated and printed.
Solution for the displacements and tractions (and/or temperatures and fluxes) at the

Insert-Matrix composite interface {on an element basis).

. Displacement, stress and strain (and/or temperature and fluxes) on a nodal basis, at

all surface nodes, for each GMR.
Displacements (and/or temperatures) at interior nodes.

Stresses at interior nodes.
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7. EXAMPLES OF FIBER COMPOSITE ANALYSIS

7.1 Introduction

In this section a number of examples are presented to verify and demonstrate the
applications of the ceramic composite formulation of the previous chapters.

In the mesh diagrams of the models containing the inserts, a double line is used to
indicate the centerline of the insert elements. The length of these elements are shown in
proper proportion for the three-dimensional views, however, the radii of the inserts are not
indicated on these diagrams. The double line is a symbolic representation of the insert
elements and does not in any way indicate the diameter of the insert. Refer to the example
description for the values of the radii.

Throughout this section consistent units are used in the definition of the examples.
This means all lengths are defined in the same units and the tractions and the elastic
moduli are defined in terms of these lengths as force/length?. No confusion should arise

since the results are reported as non-dimensional quantities.

7.2 Cube with a Single Insert

The first test of the formulation is on a unit cube with a single insert of radius 0.1
through the center of the cube. The cube is subjected to tension and shear in the direction
parallel and perpendicular to the insert. The cube has a modulus of 100.0 and a Poisson
ratio of 0.3. Consistent units are used for all information described in this problem. An
insert with two different moduli of 1,000 and 10,000 is studied. The Poisson ratio of the
insert is assumed to be the same as that of the cube.

The problem is analyzed by both the present formulation and by a full three-dimensional
multi-region BEM approach. As shown in Fig. 7.2.1, the model for the insert formulation
consists of fourteen quadratic boundary elements and the insert contains three quadratic
insert elements. The two-region, three-dimensional model shown in Fig. 7.2.2 contains
twenty quadratic boundary elements in the first region and sixteen in the second. Note
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9-noded elements are used in describing the insert and hole to accurately capture the
curvilinear geometry.

In Fig. 7.2.3, the profile of the end displacement of the cube under a uniform normal
traction of 100.0 (in parallel with the insert) is shown. The present formulation is in good
agreement with the full three-dimensional results for Ei/E = 10. For the case Ei/E = 100,
the insert formulation exhibits greater stiffness than the 3-D results. This difference is
contributed to the way the load is distributed from the insert to the composite matrix. In
the full 3-D model, the applied traction and the resulting reactions at the fixed end act
directly on the end of the insert. In the composite formulation, the insert is assumed not
to intersect the boundary surface and therefore the insert is moved back slightly from the
end of the cube. The load is therefore transferred through the composite matrix to the
end of the insert and to its sides in a manner that is slightly different from the full 3-D
analysis.

In Fig. 7.2.4, the stress distribution through the center of the cube (from A to B
as indicated in the figure) is shown. Again the results are very good for Ei/E = 10, and
deviates slightly from the full 3-D results in the second case.

In Figs. 7.2.5 and 7.2.6, the lateral displacements along the side of the cube are shown
for a cube subjected to a shear traction of 100. For the case of applied shear perpendicular
to the insert (Fig. 7.2.5), the results for both the insert and full 3-D model show good
agreement. Once again a slight deviation is observed for Ei/E = 100. In the case of the
shear traction in the plane of the insert (Fig. 7.2.6) the insert has little effect on the

displacement (as anticipated) and all results fall in close proximity.

7.3 Lateral Behavior of a Cube with Multiple Inserts

Existing methods of analysis of composite material based on mechanics of materials
have been relatively successful in predicting the behavior of composite material for loading
in the longitudinal direction. The properties perpendicular to the direction of the fibers
are not so readily predictable by present means. The focus of the present example concerns
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this lateral behavior.

Four cubes (Fig. 7.3.1) with one, two, five and nine inserts are fixed with a roller
boundary condition on one side and subjected to a uniform traction, perpendicular to the
inserts. The material properties, given in consistent units, are

Einsert = 1000 E™T = 100
Jinsert _ 3 umetric — 0.3

For the cube with one and two inserts, the boundary mesh consists of two quadratic
surface elements on each lateral side and four elements on the top and bottom. For the
cubes with five and nine inserts, one additional element was added to the side with the
applied traction and to the side with the roller boundary condition. The top and bottom
faces contain six elements to match the pattern of the sides. In all cases, each insert
contained three one-dimensional quadratic elements.

The profile for the end displacement of the cube with one insert and five inserts are
shown in Figs. 7.3.2 and 7.3.3. The results are seen to be in good agreement with the
two-dimensional results. The 2-D results are approximations since plane stress is assumed.
The 3-D solutions for the one insert are within 2% error of the 2-D solution and within
3% for the case of 5 inserts.

Also shown in Fig. 7.3.4 are the average end displacements for the one, two, five
and nine inserts. Results show good agreement with 2-D results. For one, two and five
inserts, the solutions are within 2% error of the 2-D results and 6% for the case of nine
inserts where the volume ratio of the inserts to the total volume is 28.2%. The result is
also displayed in a plot of Effective Modulus vs. Insert Volume Ratio in Fig. 7.3.5. The
effective modulus is defined as the average stress/average strain. The three-dimensional

results follow closely to the two-dimensional solution.
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7.4 Thick Cylinder with Circumferential Insert Supports

The strength of a cylinder under internal pressure can be increased by adding stiff
circumferential insert supports. In the present example, a three-dimensional, open ended
thick cylinder are 10 and 20 respectively, the thickness is 2 and the radius of the fully-
bonded inserts is 0.5. By using roller boundary conditions on the faces of symmetry, only
a fifteen degree slice of the thick cylinder needs to be modeled. As shown in Fig. 7.4.1,
sixteen eight-noded quadratic boundary elements are used to define the sides of the model,
a nine-noded element is used on both the internal and external faces of the cylinder, and
three insert elements are used per insert. Note, the inserts in this problem are curvilinear
in geometry. The elastic modulus of the cylinder is assumed to be 100, and the effect of
inserts with five different moduli of 100, 250, 500, 750 and 1000 is studied. The Poisson
ratio is 0.3 for both the composite matrix and insert, and the internal pressure in the
cylinder is 100.

Results from a multi-region, axisymmetric BEM analysis were used for comparison
with the 3-D insert results of the present example. The axisymmetric model consists
of twenty quadratic boundary elements on the outer surface, and six boundary elements
per hole and per insert (Fig. 7.4.2). The radial displacement through the thick cylinder
along the top face is shown in Fig. 7.4.3 for all five moduli. The displacement for the
composites with low Ei/E ratios are in good agreement with the axisymmetric results, and
diverge slightly for higher Ei/E ratios. In Fig. 7.4.4, the circumferential stress is shown
for the same points along the top edge. This stress is smooth for the homogeneous case
(Ei/E = 1.0) and exhibits increasing fluctuations as the Ei/E ratio increases and the inserts
take on more of the load. The circumferential stress of the 3-D insert model is in good
agreement with the axisymmetric results for all cases. In Fig. 7.4.5, the radial stress is
displayed for the two models. The inserts have little effect on this stress and the curves of

the five moduli for both approaches lie in close proximity.
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7.5 Cube with Multiple Inserts with Random Orientation

In an attempt to analyze a material with a random fiber structure, cubes with multiple
inserts oriented in random directions are studied. The cubes are of unit length and have
four boundary elements per side (Fig. 7.5.1a). Randomly oriented fibers of variable length
with radii of 0.05 are placed in five cubes in quantities of 5, 10, 15, 20 and 25 (Fig. 7.5.1b-
f). Three cases of material properties are considered for each cube. The modulus of the
composite matrix is 100 for all cases, however, the modulus of the inserts are 500, 10,000
and 200,000 for the three cases studied. Poisson’s ratio is uniformly 0.3 throughout. Roller
boundary conditions are employed on three adjacent sides and a uniform normal traction
of 100 is applied to a fourth face.

The normal end displacement at the center of the face on the side with the applied trac-
tion is plotted against the number of inserts in a cube for the three materials (Fig. 7.5.2).
The displacement decreases with increasing number of inserts per cube and increasing Ei/E

values as expected.

7.6 A Beam with Insert Reinforcement in Bending

In the last example, the applicability of the present formulation to the study of the
micromechanical behavior of the ceramic composite is apparent. The present formulation,
however, is equally applicable to typical problems encountered by civil engineers. Rein-
forced concrete can now be modeled exactly as a three-dimensional body and studied in
detail for the first time. The present example considers a reinforced concrete beam. Here
the concrete plays the role of the composite matrix and the reinforcement bars play the
role of the fiber insert. In Fig. 7.6.1, a 4 x 1 x 1 beam with four inserts is modeled using
twenty-eight quadratic boundary elements. The effect of the ratio of insert modulus to
matrix modulus (Ei/E) is studied for a range of values between 1 and 100. The Poisson
ratio is 0.3 for both the beam and reinforced rods.

The beam is completely fixed at one end and a downward shear traction of 100 is
applied to the other end. The non-dimensional vertical displacement of the end obtained
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from the present analysis is shown in Fig. 7.6.2 as a function of Ei/E. The non-dimensional
displacement is defined as the end displacement of the reinforced beam divided by the
displacement of a homogeneous beam under similar boundary conditions.

The end displacement obtained from the mechanics of material solution is also displayed
in Fig. 7.6.2 in non-dimensional form. The curvature of the two plots are very similar but
differ in magnitude. This difference is contributed to the fact that although the mechanics
of material solution accounts for the stiffening due to the inserts, it does not include the

effect of interaction between inserts.

7.7 Laminated Fiber Composite

A laminated composite fabricated from a fiber composite material is shown in Fig.
7.7.1. The fiber composite is constructed with a single row of fully-bonded fibers oriented
in the same direction. A two-ply laminate is then constructed from the fiber composite
with the fibers of the two layers oriented at 90° angles. A boundary element model created
for the study of this material is shown in Fig. 7.7.2. A small slice containing two inserts in
each layer is used. The model consists of two regions. The outer surface of each region is
modeled with sixteen quadratic boundary elements and each insert contains two quadratic
insert elements. The interface between the two regions is assumed to be a perfect bond,
however, the present version of the program also allows for sliding and spring connections.

The composite structure is subjected to bi-axial tension. This is accomplished with
normal tractions of 100 applied to two adjacent roller boundary conditions applied to the
opposite ends. The elastic modulus of the composite matrix of both regions are assumed
to be 100, and the moduli of the inserts very between 100 and 10,000. The Poisson ratio
is 0.3 for both the composite matrix and inserts at all times.

Figure 7.7.3 displays the displacement as a function of insert moduli for a point on the
interface at the corner of the plate adjacent to the sides with the applied traction. The

material exhibits less displacement as the modulus is increased, as expected.
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7.8 Heat Conduction: Cube with Random Inserts

The cube with randomly oriented inserts shown in Fig. 7.5.1 was analyzed for heat
conduction analysis. The left end was subjected to a prescribed temperature of 100°F and
for the right end a temperature of 0° was specified. All other surfaces were assumed to be
insulated. Figure 7.8.1 shows the equivalent thermal conductivity of a cube for different
insert arrangements. In this analysis the ratio of thermal conductivities between the insert

and the matrix was assumed to be 100.

7.9 Thermoelasticity: Effective Coefficient of Thermal Expansion

The addition of fiber inserts in a material alters the thermal expansion of the material.
The effective coeficient of thermal expansion of a composite material is dependent on many
factors such as: The elastic and thermal properties of the individual constituents; the size,
shape, orientation, and number of fibers; and the interface interaction between the fiber
and matrix. Some investigators [Hopkins and Chamis, 1985] have formulated equations for
the determination of the effective material properties of fiber composite materials, includ-
ing the coefficient of thermal expansion. These equations are, however, limited to specific
types of insert arrangements and interface connections. For general arrangements, experi-
ments can be carried out for the prediction of effective material properties. Experiments,
however, are expensive and time consuming. The finite element method may be employed
for this purpose, however, the convergence of the solution may be slow and the solution
may be expensive and difficult to achieve. The present uncoupled thermoelastic BEM
implementation is an ideal alternative for the prediction of effective material properties
for general, tubular fiber composite materials. The analysis is relatively simple and cost
efficient.

A boundary element model of a cube with nine insert fibers is shown in Fig. 7.9.1.
The fibers are assumed to be perfectly bonded to the composite matrix. Sixteen boundary
elements are used to model the outer surface of the cube and one insert element is used to
model each of the nine fibers. The cube is subjected to a uniform temperature increase by
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simply specifying the temperature on one face of the cube and zero flux on the other five
sides. The cube is allowed to expand freely, however, rigid body translation is prevented.
The user specified radius of the insert fibers is easily changed to simulate various void
ratio, therefore, minimizing the effort required for re-analysis of the cube with different
insert to total volume ratios.

In Fig. 7.9.2 the effective coefficient of thermal expansions in the lateral and transverse
directions are shown as a function of the insert to total volume ratio for a fiber composite

material with the following material properties:

E™TiX = 17.0 x 10%psi Ensem — 28.0 x 108psi
pmatrix — g 94 pinsert — g o4
@™ = 0.5 x 1076/ F o™ = 2.1x 107°/F

Also shown are the predictions by Hopkins and Chamis (1985). The solutions of the two
analysis are in good agreement at low insert to total volume ratios and deviate slightly
from one another as the insert to total volume ratio is increased. A graph for a similar
analysis is shown in Fig. 7.9.3 for a perfectly-bonded fiber composite material with the

following material properties of aluminum and steel are used.

Ematrix _ 190 x 105 psi Einsert — 30,0 x 108 psi
Vma.trix =03 Vinsert =0.3
o™X = 12,0 x 107%/F o™ = 6.0 x 107%/F

This time the coefficient of thermal expansion of the inserts is less than that of the matrix,
and therefore, the effective coefficient of thermal expansion decreases with increasing insert
to total volume ratio. Once again good agreement is seen between the solutions of the two

analyses.

7.10 Heat Conduction: Linear Thermal Resistant Insert Interface
A cube with five inserts is used to demonstrate the linear thermal resistant interface
relation between the matrix and the insert. The boundary element mesh containing sixteen
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surface elements and five insert elements is shown in Fig. 7.10.1. The radius of the inserts
is 0.1. The conductivity of the insert and matrix are both 100.0, however, the conductivity
across the matrix/insert interface is varied. The cube is subjected to a temperature of
100.0 on a face parallel to the inserts and a temperature of 0.0 on the opposite face. The
other four sides are insulated.

A graph of the flux at the center of the zero temperature face versus the thermal con-
ductivity of the interface is shown in Fig. 7.10.2. For very large values of the interface
conductivity the interface connection approaches a perfect bond and the overall solution
approaches the solution of a homogeneous cube with a conductivity of 100.0. As the in-
terface conductivity decreases the flux decreases. For an interface conductivity of 0.0 the

cube exhibits the solution of a cube with perfectly insulated holes.

7.11 Thermoelasticity: Linear Spring-Thermal Resistant Insert Interface

The cooling of a cube containing five fiber inserts is analyzed using the thermoelastic
formulation. Shown in Fig. 7.10.1 is a boundary element model with sixteen surface
elements and five insert elements of radius 0.1. The inserts are assumed to be connected
by a linear spring-thermal resistant interface. To demonstrate the effect of the interface
connection, the insert and the matrix are assumed to be constructed from the same material
with an elastic modulus, a Poisson ratio, a thermal conductivity and a coeflicient of thermal
expansion of 100.0, 0.3, 100.0, and 0.01, respectively. The thermal conductivity across the
matrix-insert interface is held constant at 100.0, however, the spring constants between the
insert and the matrix are varied. A roller boundary condition is applied on two opposite
faces of the cube and the other four sides are free to expand, however, rigid body translation
is prevented. The cube is then subjected to a uniform decrease in temperature of 100.0.

A graph is shown in Fig. 7.11.1 of the resultant tractions at the center of the roller
boundary condition faces versus the interface spring constants (kn = k). For large spring
constant values the interface connection approaches a perfect bond, and since the material
properties of the insert and matrix are equal, the overall solution approaches the solution of
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a homogeneous cube. As the spring constants decrease, the tractions at the roller boundary

conditions decrease.

7.12 Nonlinear Matrix-Insert Interface: Beam in Bending

A boundary element model of a 4x1x1 beam with four longitudinal inserts from example
7.6 is shown in Fig. 7.6.1. The effect of the ratio of the insert modulus to matrix modulus
(Ei/E) is studied for a range of values between 1.0 and 100.0. The Poisson ratio is 0.3
throughout. A nonlinear frictional interface between the insert and matrix is assumed.
The coefficient of friction is 0.2 and the normal tangential spring coefficients are both 1000.0
times the elastic modulus of the matrix.

The beam is completely fixed at one end and a downward shear traction of 100.0 is
applied to the other end. The non-dimensional vertical displacement of the end obtained
from the present analysis is shown in Fig. 7.12.1 as a function of Ei/E. The non-dimensional
displacement is defined as the end displacement of the fiber composite beam divided by
the displacement of a homogeneous beam subjected to the same boundary conditions. The
plot of end displacement obtained in example 7.6 for a reinforced beam perfectly bonded
insert-matrix interface connections is also displayed in Fig. 7.12.1. The beam with the
perfectly-bonded inserts exhibits greater stiffness than the beam with the nonlinear insert

interface connections, as expected.

7.13 Effect of Poisson Ratio in Fiber Composites

The goal of the present five year project is to develop an accurate, yet practical bound-
ary element program for the analysis of ceramic composite material. A conventional BEM
approach is computationally expensive and mesh generation is tedious for an analysis of
a solid which may have hundreds of fiber inserts. Therefore the challenge of the present
work is to introduce certain approximations in the formulation which will produce an effi-
cient BEM analysis and will not compromise accuracy. One approximation unique to this
BEM implementation is the assumption that boundary quantities vary as a trigonomet-
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ric function around the circumference of the insert and hole. This was shown to be an
accurate approximation through the numerical applications of this section. Secondly, the
steady-state BEM formulations derived in Chapters 2-4 assume that the Poisson ratio of
the insert is equal to the Poisson ratio of the matrix. (This limitation was removed in the
formulations of Chapters 5, however, these formulations are more expensive.) This second

assumption is investigated in this example using a two-dimensional BEM analysis.

A boundary element model of a cube with a single insert is shown in Fig. 7.13.1.
Sixteen quadratic boundary elements are used to model the outer boundary and eight
elements are used to model both the hole and insert. The modulus of elasticity of the
matrix is 10 and the Poisson ratio is 0.25. The elastic modulus of the insert is assumed
to range from 10* to 108 and the Poisson ratio from 0.0 to 0.5. The cube is secured by
roller boundary conditions on two adjacent sides, a traction of 10° is applied on a third
side, and the normal displacement is measured at the center of the remaining face. The
ratio of insert diameter to side of cube is 0.2 for the volume of insert to total volume ratio
of 0.031. The displacement versus the variation in Poisson ratio (vimer/ym#ix) js shown in
Fig. 7.13.2 for the elastic modulus ratios (Esert/E™aix) of 0.01, 0.1, 1.0, 10.0, and 100.0.
The displacement in these curves are normalized by the displacement obtained for the
respective elastic modulus ratios when the Poisson ratio of the insert and matrix are the
same (v//v™ = 1.0). The displacement is observed to be minimal in all cases. The effect is
greatest for the modulus ratio E7/EM of 1.0 at the extreme values of +7/v™. The maximum

error, however, is less than 4.5%.

This same problem is analyzed for the insert diameter to side of cube ratio of 0.6 for
an insert volume to total volume ratio of 0.283 as shown in Fig. 7.13.3. The normalized
displacement versus »!/v™ for five modulus ratios is shown in Fig. 7.13.4. Very minute
change with variation of v7/vM is observed for modulus ratios of 0.01 and 100.0 which are
almost indistinguishable from one another on the graph. The variation in Poisson ratio
is seen to have a modest effect on the displacement values for modulus ratios of 0.1 and
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10.0. For an elastic modulus of 1.0, the effect of Poisson ratio is somewhat tolerable for
the midrange values of v//v™, however, it has a strong effect for extreme values of »7/v¥.

Next the effect of the Poisson ratio in a cube with multiple fibers interacting with one
another is investigated. A cube with nine inserts (Fig. 7.13.5) is analyzed under similar
conditions as the analyses of a cube with a single fiber. The volume of insert to total
volume ratio is again 0.283. In Fig. 7.13.6 the displacement versus v//v™ is shown for the
multiple fiber composite for a modulus ratio E//EM of 1.0. For comparison, the curve for a
cube with a single insert with the same modulus and insert to total volume ratio is shown.
The effect with the multiple fiber inserts is just slightly less than the effect with a single
insert.

In conclusion, we note that a difference in Poisson ratio between an insert and a matrix
should not be ignored if the difference in the modulus of elasticity is small and the volume of
insert to total volume is large. Nevertheless, fiber inserts are generally added to material in
order to strengthen the material, and the elasticity modulus ratio (£//EM) is usually greater
than five. Furthermore, many composite constituents often have comparable Poisson ratio
values. Therefore, the assumption that the Poisson ratio of the insert must be equal to

the Poisson ratio of the matrix is not very limiting.

7.14 Composite with Fifty-one Fiber Inserts

In Fig. 7.14.1 a boundary element mesh is shown for the outer surface of a rectangular
block containing fifty small insert fibers and one large fiber (insert elements not shown).
The insert fibers are aligned parallel to one another in the arrangement shown in Fig.
7.14.2. Due to the relative size of the large central fiber, this fiber is explicitly modeled as
a separate region in the conventional boundary element sense. The other fifty fibers are
each modeled with one quadratic insert element. The total number of nodes in the problem
is five-hundred and ninety-eight. The material properties of the composite constituents

are
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Matrix Fiber Type 1 Fiber Type 2

EM =172x105psi E™ =60.0x10° psi E'? = 28.0 x 106 psi
vM = 0.24 vl = 0.24 vi2=10.24
oM =05 x10%/F o' =4.0x107%/F  o’2=21x10"%/F

In Fig. 7.14.3 through 7.14.9 displacement contours are shown for a model constrained
with roller boundary conditions on three adjacent sides (bottom, left, and back faces) and
subjected to a normal traction of 10°% on the small (right side) face perpendicular to the
fibers. In. Figs. 7.14.4, 7.14.6, 7.14.8 and 7.14.9 a uniform temperature decrease of 2400°F
has also been applied in addition to the normal traction. Contours for displacement (of
the top, traction free face) in the direction parallel to the normal traction is shown in
Figs. 7.14.3 and 7.14.4. In Fig. 7.14.5 and Fig. 7.14.6 the contours are shown for the
displacement (of the top face) in the direction perpendicular to the normal traction and
the fibers. In Fig. 7.14.7 and Fig. 7.14.8 the contours are shown for the displacement (of
the top face) parallel to the fibers. Fig. 7.14.9 displays a three-dimensional view of 7.14.8.

In Fig. 7.14.10 a contour plot of displacement is shown for a model subjected to a
normal traction on the top face perpendicular to the fibers. The displacement shown is of
the top face in the direction parallel to the loading. The opposite face is fixed on rollers,
and the lateral faces are traction free (rigid body translation is prevented). The fifty small
insert fibers primarily strengthen the matrix uniformly, and the large insert interacts with

the strengthened matrix resulting in the deformation displayed in the figures.

7.15 Transient Thermoelastic Analysis of a Cube with Inserts

An uncoupled thermoelastic analysis of a cube with one and nine inserts is studied. A
unit cube is discretized with six quadratic boundary elements on the surface of the cube
and one insert element per insert. The radius of the insert is 0.2 for the cube with a single
insert and 0.1 for the cube with nine inserts. The material properties, given in consistent
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units are

E™™sert = 100.0 Emetrix — 1.0
Vinsert, =0.3 Vmatrix =0.3
ket = 1000.0 grmerix — 1.0
pcinset = 1.0 pemBtrix — 1.0

The temperature of the cube is initially at zero degrees. On a face parallel to the length of
the insert, the temperature is held at 0° degrees and the face is supported by rollers. On
the opposite face the temperature is suddenly raised to 100°. All other sides are insulated
and rigid body translation is prevented. The results of the flux and end displacement
versus nondimensionalized time for the traction free face is given in Fig. 7.15.1 through
7.15.4.

The three-dimensional fiber composite BEM results are compared with conventional,
two-dimensional BEM results. In Figs. 7.15.1 and 7.15.2 the flux on the free face is
shown for a cube with a single insert and a cube with nine inserts, respectively. Similarly,
Figs. 7.15.3 and 7.15.4 display the results for end displacement versus time. The fiber
composite analysis is in good agreement with the conventional, two-dimensional results.
Slight deviation is expected due to the 2-D assumption and the use of a somewhat crude

3-D discretization.

7.16 Transient Heat Conduction Analysis of a Turbine Blade

A boundary element discretization of a turbine blade is shown in Fig. 7.16.1. Half
symmetry is employed in this model which consists of a single region with ninety-two
quadratic boundary elements. The model is 58.2 mm long, 13.9 mm wide, the radius of
the base is 6.95 mm, and the tip is 1.98 mm (from the axis of symmetry) in thickness at
the largest point.

A transient heat conduction analysis is first carried out on a homogeneous blade with
a conductivity of & = 0.0216. The blade initially rests in thermodynamic equilibrium at zero
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temperature. Then, a gas at a temperature of 1200° is assumed to flow over the blade
while a gas at a temperature of 500° surrounds the base of the blade. At the leading edge
of the blade the film coefficient is h = 0.003395 and tapers off to h = 0.00064 at the trailing
edge. At the base of the blade the film coeficient of h = 0.00005 is assumed. Figures 7.16.3a
through 7.16.7a contain contour plots describing the temperature flow through the blade
at 1.0, 2.0, 4.0, 6.0, and 8.0 seconds.

The blade is reanalyzed, this time with eight fibers (four fibers per side) running from
the tip of t‘he blade to half way through the base. The radius of the fibers is 0.15 mm and
their cross-sectional locations are shown in Fig. 7.16.2. Five (9-noded) insert elements are
used to model each fiber. The conductivity of the fibers is 100 times the conductivity of
the blade. In Figs. 7.16.3b through 7.16.7b the resulting temperature distributions are
shown in contour plots. Overall, the higher conductivity of the fibers increases the heat
flow through the blade. Hence, the heat at the tip of the blade is carried to the base faster
than in the homogeneous blade. This results in a temperature distribution which is lower

than the homogeneous blade near the tip and higher near the base.
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Fig. 7.2.1 Discretization of an Insert in a Unit Cube Utilizing
Quadratic Insert Elements

Fig. 7.2.2 Full Three-dimensional, Multi-region Discretization
of an Insert in a Unit Cube
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Fig. 7.2.5 Lateral Displacement Along a Side of a Cube Subjected
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Fig. 7.3.1 Arrangement of Multiple Inserts in a Unit Cube
Subjected to Lateral Tension
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the Interface of a Laminate-Fiber Composite Under
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Fig. 7.14.7. Contours of Displacement in the Out of Plane
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Fig. 7.16.1 Discretization of a Turbine Blade
(Insert Elements Not Shown)

Fig. 7.16.2 Cross-Sectional View of the Turbine Blade
Displaying the Location of the Eight Fibers
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8. CURRENT ACHIEVEMENT

8.1 Third Year Development

The main focus of the work of this past year was the implementation of the transient
heat conduction analysis and the implementation of the transient thermoelastic analysis.
These analyses are vastly different from their steady-state counterparts. This and other

important developments of the past year are outlined below.

New Numerical Integration for Inserts: The complexity of the transient kernel func-
tions prohibits the analytic integration about the circumference of the insert in a manner
similar to the steady-state case. Instead a numerical integration scheme had to be devel-
oped for this purpose. The circular shape function which was developed during the early
stage of this work is still employed in describing the field quantities across the boundary of
the inserts and the holes encompassing the inserts. Since numerical integration adds to the
cost of the analysis and is required at each step in a transient BEM analysis, an efficient
numerical integration had to be developed. The present scheme employs one-dimensional
Gaussian integration formulas independently in two directions. This allows the order of
the formulas to vary independently in the two directions and the accuracy and the cost

can be optimized.

New Efficient Assembly for Transient Analysis: The modified boundary integral ap-

proach and the resultant assembly scheme which are used in the steady-state composite
analyses can not be used in the transient case, since it requires the transient material prop-
erties of the fibers to be identical to the properties of the composite matrix. For general
fiber material properties a new approach had to be developed. The success of the steady-
state composite analyses is based on the fact that the size of the system equations is kept
to a minimum. This allows large problems with many inserts to run efficiently. The new
assembly scheme for transient analysis employs backsubstitution of the insert equations

107



in an efficient manner so that the final system is the same size as the steady-state case.
Furthermore, this backsubstitution, as well as the decomposition of the system matrix is

only required in the initial time step.

Alternative Method for Steady-State Composite Analysis: The assembly developed for

the transient composite analysis was extended back to the steady-state formulations. The
object of this is two-fold. First, since the assembly schemes are completely different, it
provides a check of both methods. Second and most importantly, the original modified
boundary integral approach is based on an assumption that the Poisson’s ratio of the fibers
are the same as the composite matrix. Although it has been shown (example 7.13) to be
a good approximation, the new assembly scheme permits the Poisson’s ratio of the fibers
and the composite matrix to be different. This new approach, however, is more expensive

than the original method.

New Nonlinear Interface Model: The first nonlinear fiber to matrix interface model

used in the program was based on the Coulumb’s law of friction. An interface based on
this model, however, cannot withstand any tension. If subjected to tension, a gap opens
up and the tractions on the interface become zero. In most applications, the fiber has
an adhesion to the composite matrix. Therefore, an interface subjected to tension will
exhibit elastic and/or nonlinear behavior before a failure takes place. A modified version
of the spring-Coulumb interface model has been added to the program. This model has
the ability to sustain a traction force in both the normal and tangential directions up to a

user specified limit. Above this limit the normal spring-Coulumb model prevails.

Maintenance and Testing: Considerable effort has been devoted to maintaining the
computer program and improving the quality and reliability of the code. Verification
problems from previous years are regularly executed to assure their continued operation.

Furthermore, the present work was thoroughly tested and verified.
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8.2 Summary

Significant progress has been achieved towards the goal of developing a general purpose
boundary element program for the micro- and macro-mechanical studies of advanced ce-
ramic composites. In the first year of the contract a ceramic composite code was developed
based on the advanced boundary element program BEST3D. At that time the formula-
tion for elastostatic analysis of fully-bonded inserts was implemented in the code. All the
general purpose features in BEST3D, such as the definition of local boundary conditions
and multi-region substructuring, were retained in order to facilitate the analysis of real

problems encountered in industry today.

The ceramic composite formulations for steady-state heat conduction and steady-state
uncoupled thermoelasticity were developed and implemented in the elastostatic code de-
veloped in the first year. Analytic integration of the kernel functions was performed about
the circumference of the insert, and therefore, the numerical integration of the insert (and
hole) was reduced to an efficient, one-dimensional integration along the length. An ef-
ficient assémbly and solution algorithm was developed for these formulations similar to
the algorithm used in the elastostatic analysis. This insert assembly scheme significantly
reduced the number of unknowns in the system, and therefore, it reduced the number of
equations and the work required to solve them. Also, the{ displacement and the heat con-
duction equations of the thermoelastic analysis are integrated simultaneously, but solved

separately for efficiency.

Considerable effort has been focused on the development of nonlinear interface connec-
tions between the fibers and the composite matrix. Up to this point only perfectly-bonded
connections were considered. The ceramic composite formulations were reformulated to
allow the implementation of a variety of sophisticated interface relations such as spring
connections, sliding connections with smooth or frictional resistance, progressive debond-
ing, yielding on interfaces, and temperature dependent connections. In addition to the
fully-bonded insert interface, constitutive relations were derived for spring connections
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and slide connections with spring-coulomb frictional resistance. These models were im-
plemented in a general manner to facilitate the addition of other interface models to be
derived in the future. Since the interface relations are nonlinear and path dependent, an
efficient nonlinear algorithm had to be derived. The nonlinear algorithm was implemented

in both the elastostatic and the uncoupled thermoelastic analyses.

Overall the cost of the steady-state ceramic composite analysis is just slightly more
expensive (for a moderate number of inserts) than the cost of analyzing the matrix without
the inserts present. The additional cost is primarily attributed to the integration of the
outer surface of the matrix for the additional nodes on the surface of the hole containing the
insert, and towards the expense of solving a slightly larger system. More importantly, the
present analysis is far more efficient than the conventional three-dimensional, multi-region
approach which requires significantly more nodes in the discretization of the insert and hole.
The additional nodes require additional equations which add to the expense of integration
and solution. Furthermore, the conventional approach requires a two-dimensional numer-
ical integration over the surface of the insert and hole as opposed to a one-dimensional
integration used in the present method. The data preparation for the present method is
less involved than the conventional multi-region approach and the location of the inserts
can be readily changed in a re-analysis. Moreover, the code developed in the present work
allows up to 500 (100 per GMR) insert elements in an analysis. An ordinary multi-region
code would require a 500 region capability in order to compete. In terms of computer
expense and the cost of data preparation for a 500 region problem, such analyses would

be impractical.

The implementation of the transient heat conduction and the transient thermoelastic
composite analyses are more complicated than of the steady-state cases due to the presence
of the convolution integrals. Since the transient kernels cannot be integrated analytically, a
numerical integration scheme was developed for the integration of the inserts. Furthermore
a completely new assembly scheme had to be developed for the analysis. This assembly
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scheme, will also be adopted for the elastodynamic formulations. Although, the transient
algorithm costs more than its steady-state counterpart, the present implementation is very
efficient relative to the complex nature of the problem.

The ceramic composite formulation for elastostatics, steady-state and transient heat
conduction, and steady-state and transient uncoupled thermoelasticity has been success-
fully implemented and has been proven to be accurate and efficient. Furthermore, the
development and implementation of the nonlinear interface constitutive models was suc-
cessfully carried out in a general manner. Since the boundary element method has already
been proven successful in elastodynamic, free vibration, and failure analyses, coupled with
the success of the present work, the plan to extend the ceramic composite formulations to
these other areas holds great potential. In fact, the boundary element method may not
only be the best tool, but may also be the only practical tool for the analysis of large

ceramic composite problems encountered in industry.
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9. FUTURE DEVELOPMENT

Significant progress has been achieved during the first three years in developing a
user friendly, ceramic composite program. The infrastructure of the program has been
set up to facilitate future development. Presently the elastostatic, the steady-state heat
conduction, and the steady-state uncoupled thermoelastic formulations for the analysis of
fiber composite bodies with linear and frictional fiber-matrix interface connections have
been implemented and tested. Likewise, the transient heat conduction and thermoelastic
analysis, with bonded interfaces have been implemented and are working successfully.
Delivery of the present code is planned for Spring of 1991.

The remaining work for the last two years of this contract is concentrated in two areas:
the yielding and failure of the fiber composites under loading; and the dynamic analysis
of fiber composites. The upcoming year will focus on the first topic. An algorithm for
yielding and tearing of individual fibers will be introduced in the program and extended
to the yielding and failure of the composite matrix. Both a plastic fracture and a creep
model will be included. To complete the failure analysis the nonlinear fiber-matrix interface
development will be added to this algorithm. The end result will allow the analysis of very
sophisticated modes of failure.

Finally, a time saving feature will be added to the insert integration schemes which
will eliminate some unnecessary integration when there are two or more fibers having the
same material properties, geometry, and discretization.

In the fifth and final year of the contract a free vibration analysis for fiber composites
will be implemented along with a formulation for the steady-state and transient elasto-
dynamic analysis. Next, the nonlinear interface, creep and failure models will be added
to these implementations. Finally, the last piece of work will be the development of a
temperature dependent interface and creep model (thermoplastic creep model) that can
be used in conjunction with the uncoupled thermal formulation. The order of work for the
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last two years of the contract is summarized in Table 9.1.

The final version, in particular, will provide a very precise, yet very eflicient, use-
friendly, design and analysis tool for ceramic composites exposed to severe operating
environments. The resulting computer code will enable an engineer to undertake rapid
numerical experiments to gain insight into the micro- and macro-mechanical behavior of
ceramic composite materials. Armed with this information, the disposition of fibers can

be selected to optimize performance under inelastic, thermal and dynamic loading.
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TABLE 9.1

Planned Development for the
Boundary Element Ceramic Computer Code

Fourth Year (1991)

Implement a time saving insert integration feature.

Implement nonlinear interfaces in transient problems

Implement yielding and failure of fibers

Implement yielding and failure of the composite matrix (plasticity fracture models,
creep model)

Combine nonlinear interfaces with failure analysis

Fifth Year (1992)

Implementation of steady-state elastodynamics

Implementation of transient elastodynamics

Implementation of free vibration analysis

Add nonlinear interfaces and failure models to dynamic problems

Add temperature dependent interfaces and failure models (thermoplastic creep model)

114



REFERENCES

Z&bramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, Dover, New York
1974).

Ballarini, R. and Shamin, A., ‘Finite Element Modeling of Frictionally Restrained Com-
posite Interfaces’, NASA Contractor Report 182281 (April 1989).

Banerjee, P.K., ‘Integral Equation Methods for Analysis of Piece-wise Non-homogeneous
’(I‘hree)-dimensiona.l Elastic Solids of Arbitrary Shape’, Int. J. Mech. Sci., 18, pp. 293-303
1976).

Banerjee, P.K., Ahmad, S. and Manolis, G.D., ‘Transient Elastodynamic Analysis of Three-
dimensional Problems by Boundary Element Method’, Earthquake Engineering and Struc-
tural Dynamics, Vol. 14, pp. 933-949 (1986).

Banerjee, P.K. and Butterfield, R., Boundary Element Methods in Engineering Science,
McGraw-Hill, London (1981).

Banerjee, P.K. and Butterfield, R., Developments in Boundary Flement Methods - I, Ap-
plied Sci. Publishers, Barking, Essex, UK (1979).

Banerjee, P.K. and Driscoll, R.M., ‘Three-dimensional Analysis of Raked Pile Groups’,
Proc. of Inst. Civil Engineers, Research and Theory, Vol. 61, pp. 653-671 (1976).

Banerjee, P.K. and Henry, D. Analysis of Three-dimensional Solids with Holes by BEM,
to appear in Int. Jour. Numer. Methods in Engrg. (1991).

Banerjee, P.K. and Mukherjee, S., Developments in Boundary Element Methods - III, Ap-
plied Sci. Publishers, Barking, Essex, UK (1984).

Banerjee, P.K. and Shaw, R.P., Developments in Boundary Element Methods - II, Ap-
plied Sci. Publishers, Barking, Essex, UK (1982).

Banerjee, P.K. and Watson, J.0., Editors, Developments in Boundary Element Methods
IV, Elsevier Applied Science Publishers, Barking, Essex, U.K. (1986).

Banerjee, P.K., Wilson, R.B. and Miller, N., ‘Development of Large BEM System for
Three-dimensional Inelastic Analysis’, in Advanced Topics in Boundary Element Analysis,
ed. T.A. Cruse, A.B. Pifko and H. Armen, AMD-V72, ASME, New York (1985).

Banerjee, P.K., Wilson, R.B. and Miller, N., ‘Advanced Elastic and Inelastic Stress Anal-
ysis of Gas Turbine Engine Structures by BEM, Int. Jour. Numer. Methods in Engrg.,
Vol. 26, pp. 393-411 (1988).

Behrens, E., ‘Thermal Conductivities of Composite Materials,” J. Composite Materials,
Vol. 2, p. 2 (1968).

Butterfield, R. and Banerjee, P.K., ‘Analysis of Axially Loaded Compressible Piles and
Pile Groups’, Geotechnique, Vol. 21, No. 1, pp. 43-60 (1971).

115



Byrd, P.F. and Friedman, M.D., Handbook of Elliptic Integrals for Engineers and Physi-
cists, Springer-Verlag, Berlin (1954).

Caruso, J.J. and Chamis, C.C., ‘Assessment of Simplified Composite Micromechanics Using
Three-dimensional Finite-element Analysis’, J. Comp. Tech. Res., Vol. 8, No. 8, pp. 77-83
(1986).

Chamis, C.C. and Sinclair, J.H., ‘The Effects of Eccentricities on Fracture of Off-axis Fiber
Composites’, Polym. Eng. and Sci., Vol. 19, No,. 5 (April 1979).

Cruse, T.A.,° An Improved Boundary Integral Equation Method for Three-dimensional
Elastic Stress Analysis’, Comp. and Struct., V4, pp. 741-754 (1974).

Dargush, G.F., ‘Boundary Element Methods for the Analogous Problem of Thermome-
E:ha.ni;s and Soil Consolidation’, Ph.D. Thesis, State University of New York at Buffalo
1987).

Dargush, G. and Banerjee, P.K. Development of an Integrated BEM for Hot Fluid Struc-
Eure I)nteraction, Earth to Orbit Propulsion System, NASA Conf. Publication No. 3012
1988).

Dargush. G.F. and Banerjee, P.K., ‘Advanced Development of the Boundary Element for
Steady-state Heat Conduction’, Int. J. Num. Methods in Eng., Vol. 28, pp. 2123-2142
(1989).

Dargush, G.F. and Banerjee, P.K., ‘BEM Analysis for Three-dimensional Problems of
EI&'ans;ent Thermoelasticity’, Int. Jour. Solids and Structures, Vol. 26, pp. 199-216
1990).

Dargush, G. and Banerjee, P.K., ‘Application of the Boundary Element Method to Tran-
sient Heat Conduction’, Int. Jour. Numer. Methods in Engrg., Vol. 31, to appear (1991).

Davidge, R.W., ‘Fibre-reinforced Ceramics’, Composites, Vol. 18, No. 2, pp. 92-97 (1987).
Dongarra, J.J. et al, Linpack Users’ Guide, SIAM, Philadelphia, Pa (1979).

Garﬁ, K.S., Svalbonas, V. and Gutman, G., Analysis of Structural Composite Materials,
M. Decker, New York (1973).

Hashin, Z. and Rosen, B.W., ‘The Elastic Moduli of Fiber Reinforced Materials,’, J. Appl.
Mech., Vol. 31, p. 223 (1964).

Hastings, C., Jr., Approximations for Digital Computers, Princeton University Press,
Princeton (1955).

Henry, D. and Banerjee, P.K., ‘A Thermoplastic BEM Analysis for Substructured Axisym-
metric Bodies’, Journal of Engineering Mechanics, ASCE, Vol. 113, No. 12, pp. 1880-1900
(1987).

Henry, D. and Banerjee, P.K., ‘A New Boundary Element Formulation for Two and Three-
dimensional problems of Thermoelasticity Using Particular Integrals’, Int. Jour. Numer.
Methods in Engrg., Vol. 26, pp. 2061-2077 (1988).

Hill, R., ‘Theory of Mechanical Properties of Fibre-strenghtened Materials:  III. Self-
consistent Model’, J. Mech. Phys. Solids, Vol. 13, p. 189 (1965).

116



e v

[\‘ 1 [ [N

Hopkins, D.A. and Chamis, C.C., ‘A Unique Set of Micromechanics Equation for High
Temperature Metal Matrix Composites’, First Symposium on Testing Technology of Metal
Matrix Composites, Nashville, Tenessee, NASA Technical Memorandum 87154 (November
1985).

Jones, R.M., Mechanics of Composite Materials, McGraw-Hill (1975).

Lachat, J.C. and Watson, J.O. ‘Effective Numerical Treatment of Boundary Integral Equa-
tions: A Formulation for Three-dimensional Elastostatics’, Int. J. Num. Meth. in Eng.,
10, pp., 991-1005 (1976).

McCullough, R.L., Concepts of Fiber-resin Composites, M. Decker, New York (1971).

Rizzo, F.J. and Shippy, D.J., ‘A Formulation and Solution Procedure for the General Non-
?omosgeneous Elastic Inclusion Problems’, Int. J. Solids and Struct., 4, pp. 1161-1179
1968).

Rizzo, R.R., ‘More On the Influence of End Constraints on Off-axis Tensile Tests’, J.
Composite Materials, Vol. 3, p. 202 (1969).

Selvadurai, A.P.S., ‘Some Aspects of Non-linear Interfaces in Geomechanics: Bound-
ary Element Modelling’, Third International Conference in Geomechanics, Niagara Falls,
Canada, p. 463 (May 1988).

Sen, R., Kausel, E. and Banerjee, P.K., ‘Dynamic Behavior of Axially and Laterally Loaded
Piles and Pile Groups Embedded in Inhomogeneous Soil’, Int. Jour. Numerical Analytical
Methods in Geomechanics, Vol. 9, No. 6, pp. 507-524 (1985).

(Strouﬁl, A.H. and Secrest, D., Gaussian Quadratic Formulas, Prentice-Hall, New York
1966).

Tripp, D.E., Hermann, J.H., and Gyekenyesi, J.P., ‘A Review of Failure Models for Uni-
directional Ceramic Composites Under Monotonic Loads’, NASA Technical Memorandum
101421 (June 1989).

Vinson, J.R. and Chou, T.W., Composite Materials and Their Use in Structures, John
Wiley and Sons (1975).

Walker, K.P., Research and Development Program for Nonlinear Structural Modeling with
Advar)lced Time-temperature Dependent Constitutive Relationships, NASA CR-165533
(1981).

Walker, K.P., Jordon, E.H., and Freed, A.D., ‘Nonlinear Mesomechanics of Composites
with )Periodic Microstructure: First Report’, NASA Technical Memorandum 102051 (June
1989).

Wang, H.C., ‘A General Purpose Development of BEM for Axisymmetric Solids’, Ph.D.
Dissertation, State University of New York at Buffalo (1989).

Watson, J.0., ‘Advanced Implementation of the Boundary Element Method for Two- and
Three-dimensional Elastostatics’, in Banerjee, P.K. and Butterfield, R., Developments in
Boundary Element Methods - I, Applied Science Publishers, London, pp. 31-64 (1979).

Whitney, J.M. and Riley,, M.B., ‘Elastic Properties of Fiber Reinforced Composite Mate-
rials’, J. ATAA, Vol. 4, p. 1537 (1966).

117



[

|

Wilson, R.B., Bak, M.J., Nakazawa, S., and Banerjee, P.K., ¢3-D Inelastic Analysis Method
for H)ot Section Components (Base Program)’, NASA Contract Report 174700 (February
1984).

Wilson, R.B., Snow, D.W. and Banerjee, P.K. ‘Stress Analysis of Gas Turbine Engine
Structure Using Boundary Element Methods, AMD-Vol. 72, pp. 45-64 (1985).

118



APPENDIX A - STEADY-STATE KERNEL FUNCTIONS

This appendix contains the three-dimensional, steady-state kernel functions utilized in

Chapters 2-4.
A.1 Heat Conduction

For the temperature kernel,
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whereas, for the flux kernel,
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A.2 Elastostatics

For the displacement kernel,
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A.3 Steady-State Thermoelasticity

For the displacement kernel,
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APPENDIX B - TRANSIENT KERNEL FUNCTIONS

This appendix contains the detailed presentations of the three-dimensional, transient
kernel functions utilized in Chapter 5. For the time-dependent problems, the following
relationships must be used to determine the proper form of the functions required in the

boundary element discretization. That is,
Glp(X =€) = Gap(X — €, nAl) forn=1
Gop(X =€) = Gap(X — &, nAt) — Gap(X = &, (n - 1)At) forn>1,

with similar expressions holding for all the remaining kernels. In the specification of these

kernels below, the arguments (X —¢,t) are assumed.

Note that the indices

i,j,k,1  vary from 1 to 3

o, vary from 1 to 4

6 equals4
Additionally,
z; coordinates of integration point
¢&;  coordinates of field point
yi=z;—§i r?= ViYi-

For the displacement kernel,

— - [(Y) + ()03 - av)]

Gii = ——
YT 16w p(1 - v) \ 2

Gip=0

Go; = ’SLW (m‘%ﬁj) [(yf) 94(”)]

Goo = # (%) lgs(m)]
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— whereas, for the traction kernel
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In the above,
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fe(n) =1~ hy(n).
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For the interior stress boundary kernels,
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and the prime, ’, represents a derivative with respect to . Thus,
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APPENDIX C - LIST OF SYMBOLS
A short list of notation used in this report is given below. Bold print is used to identify

vectors and matrices.

AP,BP Boundary system matrices in assembled form
Ci;(¢) A tensor dependent on location of the field point ¢
d; Difference in displacement (and/or temperature) across the matrix-insert interface
Gij, Fi; Kernel functions
kT Nonlinear interface constitutive relationship
LP(m,n2) Two-dimensional shape function
N7(n) One-dimensional shape function
M2(8) Circular shape function
t Time
t; Traction
u; Displacement
z,X Refers to global coordinates of an integration point
x System vector of unknown boundary quantities
y System vector of known boundary quantities
e;; Strain
n Refers to local coordinates of an integration point
¢ refers to coordinates of a field point

o Stress

Subscript
i,j,k Indicial notation
i,j, k=1 for heat conduction analysis (Chapter 2)
i,j,k =1,2,3 for elastostatic analysis (Chapter 2)
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- i,j k=1,2,3,4 for thermoelastic analysis (Chapters 3 and 4)
a,f = 4 for heat conduction (Chapter 5)

a,B=1,2,3,4 for thermoelasticity (Chapter 5)

Superscript
H refers to quantities on the surface of the hole (left for insert) in the ceramic matrix
1,12 refers to quantities on the surface of the (insert) fiber
O refers to quantities on the outer surface of the ceramic matrix

. (Incremental) time rate of change
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